摘要
能控性和能观性是控制系统的两个重要概念.利用非线性控制系统的微分几何理论,研究了双线性系统和它的延伸系统的能控性之间的关系以及它们的能观测性之间的关系.通过计算双线性系统的输入向量场和系统向量场之间的李括号,以及输出函数沿着这些向量场的李导数,证明了双线性系统和它的延伸系统的能控性是等价的,且它们的能观测性也是等价的.
Controllability and observability are two important concepts of control systems. The relations between controllability and observability of bilinear systems and controllability and observability of prolongation system are studied by using differential geometry theory of nonlinear control systems. At the same time, the equivalence between controllability of bilinear systems and controllability of prolongation system is proved by discussed Lie bracket between input vector fields and systems vector fields. The equivalence between observability of bilinear systems and observability of prolongation system is proved by discussed the Lie derivative of output function along these vector fields.
出处
《纺织高校基础科学学报》
CAS
2007年第1期41-44,共4页
Basic Sciences Journal of Textile Universities
基金
陕西省自然科学基金资助项目(2004A12
2004A14
2006A13)
陕西省教育厅专项科研项目(05JK289)
关键词
双线性系统
延伸系统
能控性
能观测性
bilinear system
prolongation system
controllability
observability