期刊文献+

一类拟正则半群的性质和特征

Properties and characterizations of a class of quasi-regular semigroups
下载PDF
导出
摘要 定义了一类拟正则半群,即拟右半群.利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1)S为拟完全正则半群;(2)RegS为完全正则半群;(3)R*为S上的最小半格同余;(4)RegS上的每个R-类Tα为右群;(5)TαGα×Eα,其中Gα为群,Eα为右零半群.在此基础上得到了3个等价命题:若S为具有左中心幂等元半群,则(1)S为拟右半群;(2)S为拟完全正则的,RegS为S的理想;(3)S为右群强半格的诣零理想扩张. A class of quasi-regular semigroup is defined, namely quasi-right semigroup. By using properties of quasi-regular semigroups and left central idempotents, some statements are proved. Let S be a quasi-right semigroup, then (1) S is a quasi-completely regular semigroup; (2) RegS is a completely regular semigroup; (3) R^* is the smallest semilattice congruence on S; (4) Each R-class Ta on RegS is a right group; (5) Ta≌Ga×Ea, where Ga is a group,Ea is a right zero semigroup. On the basis, three equivalent statements are obtained. Let S be a semigroup with left central idempotents, then (1) S is a quasi-right semigroup; (2) S is a quasi-completely regular,and RegS is an ideal; (3) S is a nil-extension of strong semilattice of right semigroup.
出处 《纺织高校基础科学学报》 CAS 2007年第1期72-74,99,共4页 Basic Sciences Journal of Textile Universities
基金 西安建筑科技大学青年科技基金(DB12028)
关键词 拟正则半群 拟右半群 强半格 quasi-regular semigroups quasi-right semigroups strong semilattice
  • 相关文献

参考文献5

  • 1GALBIATI J L,VERONESI M L.On quasi-completely regular semigroups[J].Semigroup Forum,1984,29:176-271.
  • 2SHUM K P,GUO Y Q.Regular semigroups and its generalizations[J].Lecture Notes in Pure & Applied Math,1996,1 870:182-226.
  • 3BOGDANOWIC S.Semigroups with a system of subsemigroups[M].Novisad:Novisad University,1985.
  • 4HOWIE J M.An introduction to semigroup theory[M].London:Academic Press,1976.
  • 5SHUM K P,REN X M.Abundant semigroups with left central idempotents[J].Pure Math Appl,1999,10(1):109-113.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部