期刊文献+

一种基于数值计算的改进BP神经网络加速算法 被引量:1

An effective accelerating algorithm for BP neural network based on numerical computation
下载PDF
导出
摘要 为增加神经网络收敛的稳定性与收敛速度,提出了一种改进的网络优化加速算法.在权值调整期间加入前N期权值结果,增强了训练的稳定性;使用Steffensen迭代算法进行加速,使网络训练较快地收敛;有效地解决了传统BP神经网络的缺点.进行数值实验,将10幅二值化后的车牌数字字符图片作为训练样本送入改进的网络与传统的BP神经网络中分别进行训练,可以看出传统BP算法在训练过程中出现了振荡且收敛速度较慢.而改进的算法误差稳步下降,没有出现传统算法中振荡的现象,且较传统算法早达到收敛稳定. In order to enhance stability and convergence race of neural network, a new optimized accelerated algorithm is presented for neural network in the paper. Applied the N former weights values to new modified weights can enhance training stability; accelerating by Steffensen iterative method can make neural network more rapid convergence. It is effective to solve problems mentioned of traditional BP neural network. At last, a numerical experiment is carried out, inputting ten vehicle license number images as, training samples into improved algorithm and traditional algorithm for training. It is found that errors of improved algorithm decline steadily. The improved algorithm has no surge and a earlier convergence compared to traditional BP algorithm in the training process.
出处 《纺织高校基础科学学报》 CAS 2007年第1期96-99,共4页 Basic Sciences Journal of Textile Universities
关键词 加速算法 Steffensen迭代 BP神经网络 accelerating algorithm steffensen iteration method BP neural network
  • 相关文献

参考文献3

二级参考文献17

  • 1何国金,胡德永.卫星遥感数据的信息论理解[J].地质科技情报,1997,0(S1):44-48. 被引量:3
  • 2容官澳.计算机图像处理[M].北京:清华大学出版社,2000..
  • 3Bischof H, Leonardis A. Finding Optimal Neural Networks for Land Use Classification. IEEE Tran. on Geoscience and Remote Sensing,1998,36(1):337~341.
  • 4Muvai H. Remote Sensing Image Analysis Using a Neural Network and Knowledge-based Processing. International Journal of Remote Sensing,1997,18(4):811~828.
  • 5Venkatesh Y V, Raja S K. On the Classification of Multispectral Satellite Images Using the Multilayer Perceptron. Pattern Recognition, 2003,36:2 161~2 175.
  • 6McClellan G E, DeWitt R N, Hemmer T H, et al. Multispectral Image-processing with a Three-layer Back-propagation Network. International Joint Conference on Neural Networks, Washington D C,1989.
  • 7Zhou J, Civco D. Using Genetic Learning Neural Networks for Spatial Decision Making in GIS. Photogrammetric Engineering and Remote Sensing,1996,62(11):1 287~1 295.
  • 8Mas J F . Mapping Land Use/Cover in A Tropical Coastal Area Using Satellite Sensor Data, GIS and Artificial Neural Networks. Estuarine, Coastal and Shelf Science, 2004(59): 219~230.
  • 9Hagan M T, Menhaj M. Training Feedforward Networks with the Marquardt Algorithm. IEEE Tran. on Neural Networks,1994,5(6):989~993.
  • 10司捷,周贵安,李函,韩英铎.基于梯度监督学习的理论与应用(Ⅰ)——基本算法[J].清华大学学报(自然科学版),1997,37(7):71-73. 被引量:26

共引文献73

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部