期刊文献+

一类具有偏差变元的Duffing型方程的周期解 被引量:2

Periodic Solutions for a Duffing-Type Equation with Deviating Arguments
下载PDF
导出
摘要 利用重合度理论研究了一类具有偏差变元的Duffing型方程:x″+g(t,x(t-τ(t)))=p(t),获得了该方程存在ω-周期解存在性的若干新结论,改进推广了有关文献中的已有结果. In this paper,we use the coincidence degree theory to establish new results on the existence of periodic solutions for the Duffingtype equation ones in the literature.
作者 肖兵 周启元
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2007年第1期29-33,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 湖南省教育厅科学基金资助项目(06C58606C576)
关键词 DUFFING型方程 偏差变元 周期解 拓扑度 Duffing-type equation deviating arguments periodic solution coincidence degree
  • 相关文献

参考文献13

  • 1Villari G.Periodic solutions of liénard equation[J].J Math Anal Appl,1982,36:379-386.
  • 2Mawhin J.An extension a theorem of C.Lazer on forced nonlinear oscillations[J].J Math Anal Appl,1972,40:20-29.
  • 3Villari G.On the existence of periodic solutions for liénard equation[J].Nonlinear Anal,1983,7:71-78.
  • 4Omari P,Villari G,Zanolin F.Periodic solutions of the liénard equation with one-side growth restrictions[J].J Differential Equations,1987,67:278-293.
  • 5Zhang Mei-rong.Periodic solutions of liénard equations with singular forces of repulsive type[J].J Math Anal Appl,1996,203:254-269.
  • 6Wang Zai-hong.Periodic solutions of liénard equations with subquabratic potential conditions[J].J Math Anal Appl,2001,256:127-141.
  • 7Zhou Jin.The existence on the periodic solutions and almost periodic solutions of forced liénard type equations[J].Acta Math Sinacia,1999,42:571-576.
  • 8Huang Xian-kai,Xiang Z G.On existence of 2π-periodic solutions for delay Duffing equation x″+ g(t,x (t -τ(t)))= p (t)[J].Chinese Science Bulletin,1994,39:201-203.
  • 9Li Yong-kun.Periodic solutions of liénard equations with deviating arguments[J].J Math Research and Exposition,1998,18:565-570.
  • 10Lu Shi-ping,Ge Wei-gao.Periodic solutions of second order differential equations with deviating arguments[J].Acta Mathematica,Sinica,2002,45:811-818.

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部