摘要
针对最近特征线(NFL)与最近特征平面(NFP)分类器在大数据样本量与高维数时计算复杂度大的问题,依据局部最近邻准则,提出了一种新的搜索策略,使这两种分类器在保持较高识别率的同时,提高了算法的实时性能。对三类不同飞机实测数据的分类结果表明了所提方法的有效性。
The classifiers of Nearest Feature Line (NFL) and Nearest Feature Plane (NFP) share the same drawback in terms of the computation complexity under large data sample size and high dimensionality. Therefore, a new search strategy based on locally nearest neighborhood ride was proposed to modify the two classifiers. Compared to the traditional NFL and NFP, the modified ones can not only improve the real-time performance significantly, but also achieve competitive recognition rate. Experimental results on three measured airplanes data have confirmed the effectiveness of the proposed methods.
出处
《计算机应用》
CSCD
北大核心
2007年第4期894-896,共3页
journal of Computer Applications
基金
国家自然科学基金资助项目(60372022)
新世纪优秀人才支持计划资助项目(NCET-05-0806)
关键词
模式分类
最近特征线
最近特征平面
pattern classification
Nearest Feature Line (NFL)
Nearest Feature Plane (NFP)