期刊文献+

基于双线性建模及隐马尔可夫模型的步态识别算法 被引量:1

Human gait recognition based on bilinear modeling and HMM
下载PDF
导出
摘要 针对存在两个未知隐含特性的步态识别问题提出了一种新的识别算法,将特性分别看作“内容”和“风格”,对图像序列以状态确定的连续HMM-EM估计“内容”类型,引入非对称双线性模型理论对结果建模,通过SVD和NN聚类实现对“风格”的归类判定。实验选择人体两侧轮廓到质心垂线距离作为步态特征,通过在CASIA步态库上的实验证明,该算法能有效提高判别率,对未知风格或内容类型判断有较好的适应性。同时对影响步态识别准确性的其他因素也做了讨论。 Motivated by bi-factor-invariant human gait recognition problem, a new gait recognition algorithm was proposed in which two factors, generically called "style" and "content" were analyzed and manipulated. First, image sequences were clustered into a fixed number of content with fixed dynamics HMM-EM algorithm. Then the observation data were generated according to an asymmetric bilinear model. After that, SVD and NN were used to classify new sequences characterized by a different style label. Body width between vertical llne through centroid and outer contour was used as the feature. Test on the CASIA datasets shows the proposed method's advantage in increasing the recognition rate and adapting to new styles or content. Some other facts affecting ID identification were also discussed.
作者 袁琪 赵荣椿
出处 《计算机应用》 CSCD 北大核心 2007年第4期897-900,904,共5页 journal of Computer Applications
关键词 非对称双线性建模 期望值最大化 隐马尔可夫模型 asymmetric bilinear modeling Expectation-Maximization (EM) Hidden Markov Model (HMM) modeling
  • 相关文献

参考文献21

  • 1王亮,胡卫明,谭铁牛.基于步态的身份识别[J].计算机学报,2003,26(3):353-360. 被引量:158
  • 2LITTLE JJ,BOYD JE.Recognizing People by their gait:The Shape of motion[J].Journal of Computer Vision Research,1998,1 (2):2-32.
  • 3HUANG PS.Automatic Gait recognition via Statistical Approaches for Extended Template Feature[J].IEEE Transaction on Systems,Man,and Cybernetics-Part B:Cybernetics,2001,31(5):818 -824.
  • 4KALE A,CUNTOOR N,CHELLAPPA R.A Framework for Activity Specific Human Identification[A].Proceedings of International.Conference on Acoustics,Speech and Signal Processing[C].Orlando,2002.
  • 5CUNTOOR N,KALE A,CHELLAPPA R.Combining Multiple Evidences for Gait Recognition[A].Proceedings of the International Conference on Acoustics Speech and Signal Processing[C].2003.
  • 6BOBICK AF,DAVIS JW.The Recognition of Human Movement Using Temporal Templates[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2001,23(3).
  • 7JOHANSSON A,BOBICK A.Gait Recognition using Static Activity-specific Parameters[A].Proceedings of the Computer Vision and Pattern Recognition[C].2001.
  • 8LEE L,GRIMSON W.Gait Analysis for Recognition and Classification[A].Proceedings of IEEE Conf.on Face and Gesture Recognition[C].2002.55-62.
  • 9LEE L,GRIMSON WEL.Gait Analysis for Recognition and Classification[A].Proceedings of the Fifth IEEE Intl.Conference on Automatic Face and Gesture Recognition[C].2002.
  • 10CUNADO D,NIXON MS,CARTER JN.Using Gait as a Biometric,via phase-weighted magnitude spectra[A].Proceedings of International Conference on Audio-and Video-based Biometric Person Authentication,Crans-Montana[C].Switzerland,1997.

二级参考文献31

  • 1C Wren, A Azarbayejani, T Darrell, A Pentland. Pfinder: Real-time Tracking of the Human Body. IEEE Trans. PAMI, 1997,19(7):780~785
  • 2T Olson, F Brill. Moving Object Detection and Event Recognition Algorithms for Smart Cameras. Proc. DARPA Image Understanding Workshop, May 1997
  • 3I Haritaoglu, D Harwood, L S Davis. W4: Rea-Time Surveillance of People and Their Activities. IEEE Trans. PAMI, 2000,22(8):809~830
  • 4C Stauffer, W E L Grimson. Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans. PAMI, 2000,22(8):747~757
  • 5R T Collins, A J Lipton, T Kanade. A System for Video Surveillance and Monitoring. Proc. Am. Nuclear Soc.(ANS) Eighth Int'l Topical Meeting Robotic and Remote Systems, Apr. 1999
  • 6C Anderson, P Burt, G Can der Wal. Change Detection and Tracking Using Pyramid Transformatin techniques. Proc. SPIE-Intelligent Robots and Computer Vision, 1985,(579):72~78
  • 7J Barron, D Fleet, S Beauchemin. Performance of Optical Flow Techniques", International Journal of Computer Vision, 1994,12(1):42~77
  • 8A M Tekalp. Digital Video Processing. Rochester, NY, 1995
  • 9F Liu, R W Picard. Finding Periodicity in Space and Time. Proc. Int'l Conf. Computer Vision, 1998,376~383
  • 10KRCastleman.Digital Image Processing[M].电子工业出版社,1998..

共引文献296

同被引文献6

  • 1SHUTLER J D,,GRANTM G,NIXON M S,et al.On a large sequence-based human gait database. 4th Int Conf onRecent Advances in Soft Computing . 2003
  • 2Lucas BD,Kanade T.An iterative image registration technique with an application to stereo vision. Proceedings of the 1981 DARPA Image Understanding Workshop . 1981
  • 3Rabiner L R.A tutorial on hidden markov model and selected applications in Speech recognition. Proceeding of the IEEE . 1989
  • 4Mowbray S D,Nixon M S.Extraction and recognition of periodically deforming objects by continuous, spatial-temporal shape description. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2004
  • 5Nixon M,,Carter J,Cunado D,Huang P,Stevenage S.Auto-matic gait recognition. Proceedings of Bimetrics Person-al Identification in Networked Society . 1999
  • 6Yamazawa K,Yokoya N.Detecting moving objects from omnidirectional dynamic images based on adaptive background subtraction. Proceedings of International Conference on Image Processing . 2003

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部