期刊文献+

一种基于多分形奇异谱的噪声奇异性分析新方法 被引量:1

New method of analyzing singularities in noise based on singularity spectrum
下载PDF
导出
摘要 在介绍了噪声中的奇异性以及其全局奇异性的表征方法———多分形奇异谱的基础上,提出并实现了一种基于子波分解模极大的计算噪声多分形奇异谱的方法,通过对仿真信号验证,证明了该方法准确可靠。在对实测信号分析中,也发现该方法得到的多分形奇异谱比功率谱更能充分刻画噪声信号的特性。 Singularity analysis is one of the most promising new approaches for extracting hidden information from noise. Singularity spectrum is a statistical method to show global singularities distributions in noise. We introduced an algorithm based on wavelet transform modulus maxima to get singularity spectrum. The experiment on emulation noises shows that the new algorithm is accurate and feasible. Also we found out that singularity spectrum had some advantage over the traditional analysis method: power spectrum.
作者 谢端 赵健
出处 《计算机应用》 CSCD 北大核心 2007年第4期1000-1002,1005,共4页 journal of Computer Applications
基金 陕西省自然科学基金资助项目(2006F42) 中国博士后科学基金资助项目(20060401007)
关键词 噪声分析 奇异谱 子波分解模极大 多分形 noise analysis singularity spectrum wavelet transform modulus maxima multifractal
  • 相关文献

参考文献8

  • 1MALLAT S,HWANG WL.Singularity detection and processing with wavelets[J].IEEE Transaction on Information Theory,1992,38(2):617-643.
  • 2RIEDERER SJ,Pelc NJ,Chesler DA.The noise power spectrum in computed X-ray tomography[J].Physics in Medicine and Biology,1978,23(3):446 -454.
  • 3VICSEK T.Fractal growth phenomena,second edition[M].Singapore:World Scientific,1993.
  • 4ROBERTSON AN,FARRAR CR,SOHN H.Singularity detection for structural health monitoring using holder exponents[J].Mechanical Systems and Signal Processing,2003,17(6):1163 -1184.
  • 5MANDELBROT BB.Fractals and Multifractals:Noise,Turbulence and Non-Fractal Patterns in Physics[M].Nilhof,Dordrecht,1986.
  • 6JAFFARD S.Multifractal formalism for functions parts Ⅰ and Ⅱ[J].SIAM J.of Mathematical Analysis,1997,28(4):944 -998.
  • 7BROWN G,MICHON G,PEYRIERE J.On the multifractal analysis of measures[J].Journal of Statistical Physics,1992,66(3):775-790.
  • 8FALCONER K.Fractal Geometry-Mathematical Foundations and Applications[M].John Wiley,1990.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部