摘要
设{Xn:n=1,2,…}是定义在Hilbert空间H上有界可逆算子序列,T=(T1,T2,…Tn)是有界交换算子组,XmTXm-1=(XmT1X-m1,XmT2Xm-1,…,XmTnXm-1,…,XmnXm-1),证明了如果Ξ={T=(T1,T2,…,Tn)∈L(H)ncom:limm→∞XmTXm-1存在}是闭集,T∈Ξ且limm→∞XmTX-m1=(limm→∞XmT1Xm-1,limm→∞XmT2X-m1,…,limm→∞XmTnXm-1)∈L(H)cnom,则T与limm→∞XmTXm-1的联合谱半径满足rsp(T)≤rsp(ml→im∞XmTXm-1)≤sl→im∞(α∈Z∑n+,|α|=s(s!/α!)‖T1α1…Tnαn‖2)1/(2s),这里|α|=∑nαi,α!=α1!…αn!,同时也给出了算子组T与limXmTX-m1的共同不变子空间。
Let{Xn:n = 1,2.… } be a sequence of bounded invertible operators on H ilbert space H,T = (T1,T2, Tn ) a n - tuple of pairwise commuting operators on,H,Xm,TXm^-1, (XmT1Xm^-1,XmT2Xm^-1,… ,XmTnXm^-1).limm→∞XmTXm^-1 = ( limm→∞XmT1Xm^-1, limm→∞XmT2Xm^-2 ,..., limm→∞XmTnXm^-1) ∈ L( H)com^n . This paper prove that if ≡= {T = (T1,T2,...,Tn) ∈ L(H)com^n: limm→∞XmTXm^-1 exists} is closed set,then the joint spectral radius r p(T) of T,rsp (limm→∞XmTXm^-1 ) of limm→∞Xm TXm^-1 satisfy rsp(T) ≤r sp(limm→∞XmTXm^-1) ≤lims→∞(∑α∈Z^n+,|α|=s (s!/α!) || Tn^α1…Tn^αn||^2)^1/(2s) , n where α! = α1!…αn !, |α|= ∑i=1^n αi',and also give simultaneously invariant subspace of T and limm→∞XmTXm^-1.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2007年第1期18-20,24,共4页
Journal of Nanchang University(Natural Science)
基金
山东省中青年科学家科研奖励基金资助项目(03BS125)
关键词
交换算子组
Harte联合谱
联合谱半径
n -tuple of pairwise commuting operator
Harte joint spectrum
joint spectral radius