期刊文献+

几类可积系统的构造

Construction of Several Types of Integrable Systems
下载PDF
导出
摘要 利用Hamilton-Jacobi方程并分别采用球坐标、抛物坐标和椭圆坐标来讨论一个中心力场附加一个引力势为R的外场所组成的摄动保守系统可积时摄动引力势R的具体表达形式。 In this work,the integrability of a Hamihonian system with a centeral gravitational field plus an exterior field is discussed with the help of the Hamilton - Jacobi equation and various coordinate systems. The relation which the potential R for the exterior field should be satisfied is found when the system is integrable.
机构地区 南昌大学理学院
出处 《南昌大学学报(理科版)》 CAS 北大核心 2007年第1期42-44,共3页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10563001)
关键词 动力系统 Hamilton—Jacobi方程 可积系统 孤立积分 dynamical system Hamilton - Jacobi equation integrable system isolating integral
  • 相关文献

参考文献5

  • 1Minesaki Y,Nakamura Y.A New Discretization of the Kepler Motion Which Conserves the Runge-Lenz Vector[J].Phys Lett A,2002,306:127-131.
  • 2Minesaki Y,Nakamura Y.A New Conservative Numerical Integration Algorithm for the Three-dimensional Kepler Motion Based on the Kustaanheimo-Stiefel Regularization Theory[J].Phys Lett A,2004,324:282-287.
  • 3Arnold V I.Mathematical Methods of Classical Mechanics (translated by Vogtmann K and Weinstein A)[M].Springer-Verlag New York Heidelberg Berlin,1978.125-130.
  • 4Preto M,Tremaine S.A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems[J].Astron J,1999,118:2 532-2 538.
  • 5Vieira W M,Letelier P S.On the Integrability of Halo Dipoles in Gravity[J].Phys Lett A,1997,228:22-25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部