期刊文献+

非局部凸空间的Hahn-Banach定理及Banach包络

Hahn-Banach Extension Property and Banach Envelope of Non-locally Convex Spaces
下载PDF
导出
摘要 研究了非局部凸空间的Hahn-Banach定理及Banach包络.应用K-空间理论说明不是所有的真闭弱稠子空间都具有Hahn-Banach延拓性;构造了一个非局部凸空间,其Banach包络同构于0. This paper discusses the Hahn-Banach extension property and Banach envelope of non-locally convex spaces, and shows that not all PCDW subspaces have S-Ht3EP by K-spaces theory. We construct a non-loccally convex spase whose t3anach envelope is isomorphic to C0.
出处 《河北工业大学学报》 CAS 2007年第2期1-4,共4页 Journal of Hebei University of Technology
基金 国家自然科学基金资助(10571041) 河北省自然科学基金资助(A2005000006)
关键词 Hahn-Banach扩张性 真闭弱稠子空间 Banach包络 Hahn-Banach extension property pure closed weakly dense subspaces Banach envelope
  • 相关文献

参考文献7

  • 1Rorbert W. A Non-locally convex F-space with the Hahn-Banach approximation property [M]. New York: Springer-verlags, 1975. 76-81.
  • 2Gregory D A, Shapiro J. Non-locally convex space with Hahn-Banach extension property [J]. Proceeding American Math Society, 1970, 25: 902-905.
  • 3定光桂.非局部凸拓扑线性空间中的Hahn Banach延拓性[J].数学进展,1992,21(4):427-431. 被引量:3
  • 4Shapiro J. Extension of linear functionals on F-spaces with bases [J]. Duke Math J, 1970, 37: 639-645.
  • 5Kalton N J. Basic sequence in F-space and their applications [J]. Proceeding Edinburgh Math Soc, 1974, 2 (19) : 151-167.
  • 6Kalton N J, Peck N T, Rorbert W. An F-space sampler [M]. London: Cambridge Univeisity Press, 1984.
  • 7Talagrand M. A simple example of a pathological submeasure [J]. Math Ann, 1980, 252: 87-102.

二级参考文献1

  • 1Jerzy Kakol. Basic sequences and non locally convex topological vector spaces[J] 1987,Rendiconti del Circolo Matematico di Palermo(1):95~102

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部