期刊文献+

管道热边界层方程的迎风有限元分析 被引量:2

Upwind Finite Element Method on Temperature Boundary Layer in Pipeline
下载PDF
导出
摘要 对于管道热边界层方程,除了采用动量积分方法求得理论解析解外,也可以用数值方法求解,如有限差分、有限体积、有限元等方法。理论解析解是采用一定的简化并忽略若干项之后得到的,因此,也只是一种近似解,数值解可以考虑完整的方程和各种边界条件,因而其解较为全面。采用伽辽金有限元方法求解,管道热边界层方程为标准的对流扩散方程,当对流项较强时,需要采用迎风方法,因而也给出了迎风有限元方法的模型。 Not only adapting theory analyses method may be used to solve analyzing solution for temperature boundary layer in Pipeline, but also may be adapted computational method, such as Finite Difference Method, Finite Volume Method, Finite Element Method, and son. Theory analyses solution is acquired that is simplified and neglected several terms of equation. So, it is only approximate solution. Computational solution may be considered a whole equation and the more various boundary conditions. Hence, the solution is more complete and all - round. The equation of temperature boundary layer in Pipeline is solved by applying Galerkin's finite element method in the paper. For the convection and diffusion equation, when the convection terms is stronger, the upwind method is required to adapt. So , upwind finite element model is given out, too, in the paper.
出处 《后勤工程学院学报》 2007年第2期21-24,共4页 Journal of Logistical Engineering University
关键词 管道 温度边界层 伽辽金法 迎风有限元 pipeline temperature boundary layer GALERKIN'S method upwind finite element method
  • 相关文献

参考文献1

二级参考文献12

共引文献7

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部