期刊文献+

基于小波子空间、支持向量机和模糊积分的信号多类分类算法 被引量:1

Multi-Class Signal Classification Algorithm Based on Wavelet Subspace,SVM and Fuzzy Integral
下载PDF
导出
摘要 为了对音频信号进行有效的分类,提出一种在小波变换子空间中基于支持向量机和模糊积分进行信号特征提取和分类的新算法.首先,对信号进行预加重和窗化处理;其次,用小波变换把信号分解到不同的子空间并提取每个子空间的特征;再次,对每一个子空间信号特征向量进行标准化、降维和分类;最后,用模糊积分将子空间分类结果融合,得出最终类.试验表明本算法速度较快、精确度高. In order to classify audio signals effectively, a new signal feature extraction and classification algorithm is proposed based on SVM (Support Vector Machine) and fuzzy integral in wavelet transform sub-spaces. Firstly, the signal is pre-emphasized and windowed. Then, signals are decomposed into different subspaces using wavelet transform, and features of each subspace are extracted. Thirdly, standardization and dimension reduction are performed to classify signals in each signal subspace. In the end, classification results of each subspace are fused by means of fuzzy integral to get the final class. Experiments show that the proposed algorithm has a faster speed, higher accuracy.
出处 《信息与控制》 CSCD 北大核心 2007年第2期211-217,共7页 Information and Control
关键词 小波子空间 支持向量机 特征提取 信号分类 模糊积分 wavelet subspace SVM ( Support Vector Machine) feature extraction signal classification fuzzy integral
  • 相关文献

参考文献13

  • 1Wold E,Blum T,Keislar D,et al.Content-based classification,search and retrieval of audio[J].IEEE Multimedia,1996,3(3):27 ~36.
  • 2Li S Z.Content-based audio classification and retrieval using the nearest feature line method[J].IEEE Transactions on Speech and Audio Processing,2000,8(5):619 ~625.
  • 3Vapnik V N.Statistical Learning Theory[M].New York,USA:Wiley,1998.
  • 4Lin C C,Chen S H,Truong T K,et al.Audio classification and categorization based on wavelets and support vector machine[J].IEEE Transactions on Speech and Audio Processing,2005,13(5):644 ~651.
  • 5Chen S H,Wang J F.Noise-robust pitch detection method using wavelet transform with aliasing compensation[J].IEE Proceedings:Vision,Image and Signal Processing,2002,149(6):327~ 334.
  • 6鄢卉,李仁发.语音信号倒谱特征提取建模与仿真[J].系统仿真学报,2005,17(7):1774-1778. 被引量:8
  • 7Liu C J,Wechsler H.Gabor feature based classification using the enhanced Fisher linear discrirminant model for face recognition[J].IEEE Transactions on Image Processing,2002,11 (4):467 ~ 476.
  • 8Clarkson P,Moreno P J.On the use of support vector machines for phonetic classification[A].Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing[C].Piscataway,NJ,USA:IEEE,1999.585 ~588.
  • 9Ganapathiraju A,Hamaker J E,Picone J.Applications of support vector machines to speech recognition[J].IEEE Transactions on Signal Processing,2004,52(8):2348 ~ 2355.
  • 10徐勋华,王继成.支撑向量机的多类分类方法[J].微电子学与计算机,2004,21(10):149-152. 被引量:27

二级参考文献14

  • 1Edward.A.Lee.Overview of the Ptolemy Project[EB/OL] http://ptolemy.eecs.Berkeley.edu/publications/papers/03/overview/,2003-07-02.
  • 2Hylands,E.A.Lee,J.Liu,et.al.Heterogeneous Concurrent Modeling and Design in Java[EB/OL].http://Ptolemy.eecs.berkeley.edu/ publications/papers/03/ptIIDesignIntro,2003-07-16.
  • 3Johan Eker,J(o)rn W Janneck,Edward Lee,JieLiu,et al.Taming Heterogeneity-the Ptolemy Approach [C].Proceedings of the IEEE,2002.
  • 4杨行峻.语音信号处理[M].北京:电子工业出版社,1993..
  • 5Liu C, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminate model for face recognition [J].IEEE Transactions on Image Processing, 2002, 11 (4) :467 ~476.
  • 6Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [ M ]. New York: Plenum, 1981.
  • 7Pittner S, Kamarthi S V. Feature extraction from wavelet coefficients for pattern recognition task [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (1) :83 ~88.
  • 8Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs.fisherfaces: recognition using class specific linear projection [ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7) :711 ~720.
  • 9Wickerhauser M V. Adapted Wavelet Analysis from Theory to Software [M]. Natick, MA,USA:Peters A K Ltd. , 1994.
  • 10Pedrycz W. Fuzzy sets in pattern recognition [J]. Pattern Recognition, 1990, 2(3) :121 - 146.

共引文献32

同被引文献6

  • 1Wold E,Blum T,Keislar D,et al.Content-based classification,search and retrieval of audio[J].IEEE Multimedia, 1996,3(3):27-36.
  • 2Liu Z,Huang J,Wang Y,et al.Audio feature extraction and analysis for scene classification[C]//IEEE Signal Processing Society 1997 Workshop on Multimedia Signal Processing,New Jersey,USA, 1997: 23-25.
  • 3Foote J.Content-based retrieval of music and audio[C]//Kuo C C J.Multimedia Storage and Arehiving Systems Ⅱ,Proceedings of SPIE, 1997,3229: 138-147.
  • 4Esmaili S,Krishnan S,Raahemifar K.Content based audio classification and retrieval using joint time-frequency analysis [C]//Proceedings of the IEEE International Conference on Acoustics, Speech,and Signal Processing(ICASSP'04),2004,5:17-21.
  • 5苏毅,吴文虎,郑方,等.基于支持向量机的语音识别研究[C].第六届全国人机语音通讯学术会议,深圳,2001.
  • 6卢坚,陈毅松,孙正兴,张福炎.基于隐马尔可夫模型的音频自动分类[J].软件学报,2002,13(8):1593-1597. 被引量:47

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部