摘要
本文给出了一种新的全局满足Delaunay特性的带特征约束散乱数据的优化三角剖分算法.统一的数据结构允许散乱数据带有外部边界或内部孔洞,并且约束特征可以是有向折线或封闭多边形.由于采用了“对半划分增量型附加特征点插入”算法,从而可以用较少的附加点来使全局Delaunay特性得到满足.
This paper presents an algorithm for overall Delaunay triangulation of 2D scattered data with characteristic constraints. The outer polygonal boundary and/or inner polygonal holes that scattered data may have and the characteristic constraints which could be polylines and/or polygons are stored in a generic data structure. The overall Delaunay properties could be satisfied by inserting fewer points using a'half-separated additional characteristic point inserting technique'.
出处
《计算机学报》
EI
CSCD
北大核心
1997年第2期118-124,共7页
Chinese Journal of Computers
基金
国家自然科学基金
关键词
散乱数据
优化三角剖分
DELAUNAY
三角形
图形学
Scattered data, optimal triangulation, Delaunay triangulation, characteristic constraint.