期刊文献+

玉米抗寒基因的克隆与表达研究 被引量:5

Isolation and Expression of the Genes Involved in Tolerance to Low Temperature in Maize
下载PDF
导出
摘要 用DDRT-PCR技术研究玉米自交系承18在常温和不同低温处理下基因表达的变化,分离了10条差异表达的cDNA。序列分析结果表明:其中部分与前人克隆的抗逆cDNA同源,部分与信号传导相关基因同源,部分与功能未知的cDNA同源。用Northern杂交方法对差异片段MCI16做了进一步鉴定,同时还对玉米Cat3、拟南芥CBF1和FAD3基因在不同低温处理的玉米幼苗中的表达特性进行了研究,结果表明:MCI16、Cat3等基因受低温的诱导表达,对提高玉米的抗寒力起积极作用。 This article was the study of differential gene expression in maize inbred Cheng18 treated with different low temperature by mRNA differential display technique. Total 10 differentially expressed cDNA fragments were isolated in the study. The results of sequence analysis showed that the differentially expressed cDNA fragments were homologous with cloned cDNA fragments of adversity resistant genes, signal transduction related genes and partial unknown function cDNA fragments. The changes in gene expression of MCI16(chilling induced cDNA fragment of maize) was further confirmed by the northem hybridization analysis. At the same time the northern hybridization analysis of Cat3 in maize, CBF1 and FAD3 in Arabidopsis with maize materials treated by different temperature were made. The results showed that MCI16 and Cat3 were chilling resistant related genes, the expression of them were enhanced under the conditions of chilling acclimation and chilling stress. They played positive roles in chilling resistant.
出处 《玉米科学》 CAS CSCD 北大核心 2007年第2期26-30,共5页 Journal of Maize Sciences
基金 北京市自然科学基金项目(5022004)
关键词 玉米 MRNA 抗寒基因 差异表达 Maize mRNA Chilling resistant genes Differential expression
  • 相关文献

参考文献10

  • 1谭振波,刘昕,曹鸣庆.玉米抗寒性的研究进展[J].玉米科学,2002,10(2):56-60. 被引量:31
  • 2Prasad T K,Anderson M D,Stewart C R.Acclimation,Hydrogen Peroxide,and Abscisic Acid Protect Mitochondria against Irreversible Chilling Injury in Maize Seedlings[J].Plant Physiol,1994,105(2):619-627.
  • 3Liang P,Pardee A B.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J].Science,1992(257):967-971.
  • 4Hodges D M,Andrews C J,Johnson D A,Hamilton R I.Sensitivity of maize hybrids to chilling and their combining abilities at two developmental stages[J].Crop Science,1997(37):850-856.
  • 5Hodges D M,Andrews C J,Johnson D A,Hamilton R I.Antioxidant enzyme and compound respones to chilling stress and their combining abilities in differentially sensitive maize hybrids[J].Crop Science,1997(37):857-863.
  • 6Kaniuga Z,Saezynska V,Miskiewicz E.The fatty acid composition of phosphatidylglycerol and sulfoquinovosyldiacylgcerol of Zea mays genotypes differing in chilling susceptibility[J].Plant Physiology,1999(154):256-263.
  • 7Prasad T K,Anderson M D,Martin B A,Stewart C R.Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide[J].The Plant Cell,1994,6(1):65-74.
  • 8Eckey C,Korell M,Leib K,et al.Identification of powdery mildew-induced barley genes by cDNA-AFLP:functional assessment of an early expressed MAP kinase[J].Plant Mol.Biol.,2004,55(1):1-15.
  • 9Eva V,Dirk I,Frank V B.Singal transduction during oxidative stress[J].journal of experimental botany,2002,53(372):1227-1236.
  • 10Prasad T K.Role of Catalase in Inducing Chilling Tolerance in Pre-Emergent Maize Seedlings[J].Plant Physiology,1997,114(4):1369-1376.

二级参考文献28

  • 1[1]Abdelbagi MI, Hall AE and Close TJ. Allelic variation of a de hydrin gene cosegregates with chilling tolerance during seeding emergence[J]. Pro Natl Acad Sci USA, 1999, 96: 13566-13570.
  • 2[2]Anderson MD, Prasad TK, Martin BA et al. Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvememnt of abscisic acid in chilling tolerance[J]. Plant P hysiol, 1994, 105: 331-339.
  • 3[3]Anderson MD, Prasad TK and Stewart CR. C hanges in isozyme profiles of catalase, peroxidase and glutat hione reductase during acclimation to chilling in mesocotyls of maize seedlings[J]. Plant P hysiol, 1995, 109: 1247-1257.
  • 4[4]Au h CK and Scandalios. Spatial and temporal responses of the maize catalases to low temperature[J]. P hysiologia Plantarum,1997,101:149-156.
  • 5[5]Berberich T, Harada M, Sugawara K et al. Two maize genes encoding ω-3 fatty acid desaturase and t heir differential expression to temperature[J].Plant Mol Biol, 1998, 36: 297-306.
  • 6[6]Breusegem FV, Slooten L, Stassart JM,et al. Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize[J]. Plant Cell P hysiol, 1999, 40: 515-523.
  • 7[7]Camp WV, Capiau K, Montagu MV,et al. En hancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in c hloroplasts[J]. Plant P hysiol, 1996, 112: 1703-1714.
  • 8[8]Cannon RE and Scandalios JG. Two cDNAs encode two nearly identical Cu/Zn superoxide dismutase proteins in maize[J]. Mol Gen Genet, 1989, 219: 1-8
  • 9[9]Gombos Z, Wada H and Murata N. T he recovery of photosynt hesis from low-temperature photoin hibition is accelerated by the unsaturation of membrane lipids: a mec hanism of chilling tolerance[J]. Pro Natl Acad Sci USA, 1994, 91: 8787-8791.
  • 10[10]Haldimann P. Chilling-induced changes to carotenoid composition, photosyn thesis and the maximum quantum yield of photosystem II photoc hemistry in two maize genotypes differing in tolerance to low temperature[J]. J Plant P hysiol, 1997, 151: 610-619.

共引文献30

同被引文献161

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部