摘要
Realistic modelling and interactive rendering of forestry and landscape is a challenge in computer graphics and virtual reality.Recent new developments in plant growth modelling and simulation lead to plant models faithful to botanical structure and development,not only representing the complex architecture of a real plant but also its functioning in interaction with its environment.Complex geometry and material of a large group of plants is a big burden even for high performances computers,and they often overwhelm the numerical calculation power and graphic rendering power.Thus,in order to accelerate the rendering speed of a group of plants,software techniques are often developed.In this paper,we focus on plant organs,i.e.leaves,flowers,fruits and inter-nodes.Our approach is a simplification process of all sparse organs at the same time,i.e.,Level of Detail(LOD),and multi-resolution models for plants.We do explain here the principle and construction of plant simplification.They are used to construct LOD and multi-resolution models of sparse organs and branches of big trees.These approaches take benefit from basic knowledge of plant architecture,clustering tree organs according to biological structures.We illustrate the potential of our approach on several big virtual plants for geometrical compression or LOD model definition.Finally we prove the efficiency of the proposed LOD models for realistic rendering with a virtual scene composed by 184 mature trees.
Realistic modelling and interactive rendering of forestry and landscape is a challenge in computer graphics and virtual reality. Recent new developments in plant growth modelling and simulation lead to plant models faithful to botanical structure and development, not only representing the complex architecture of a real plant but also its functioning in interaction with its environment. Complex geometry and material of a large group of plants is a big burden even for high performances computers, and they often overwhelm the numerical calculation power and graphic rendering power. Thus, in order to accelerate the rendering speed of a group of plants, software techniques are often developed. In this paper, we focus on plant organs, i.e. leaves, flowers, fruits and inter-nodes. Our approach is a simplification process of all sparse organs at the same time, i. e. , Level of Detail (LOD) , and multi-resolution models for plants. We do explain here the principle and construction of plant simplification. They are used to construct LOD and multi-resolution models of sparse organs and branches of big trees. These approaches take benefit from basic knowledge of plant architecture, clustering tree organs according to biological structures. We illustrate the potential of our approach on several big virtual plants for geometrical compression or LOD model definition. Finally we prove the efficiency of the proposed LOD models for realistic rendering with a virtual scene composed by 184 mature trees.
出处
《中国体视学与图像分析》
2006年第4期235-242,共8页
Chinese Journal of Stereology and Image Analysis
基金
This work is supported by National Natural Science Foundation of China projects No. 60073007, 60473110, 30371157
by National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z301
by the French National Research Agency within project NATSIM ANR-05-MMSA-45
and by LIAMA funding with the project GreenLab.