期刊文献+

基于混合计算的非线性代数方程组的实根求解 被引量:1

Finding Real Solutions of Nonlinear Algebraic Equations Based on Symbolic-Numeric Methods
下载PDF
导出
摘要 利用Grbner基理论将多项式方程组的求解化为有限维代数问题,并进一步化为单变元方程w(xi)的求根,然后利用区间方法求出每个单变元方程的根区间,最后使用区间分析从变元根区间的全排列中找出方程组的区间解.在区间分析求解中,提出并证明了区间解的性质定理,该方法易于并行化,不产生误差积累,且可以找到全部方程组的实解并达到任意精度. By using Groebner basis, the paper transforms the multivariate nonlinear equations PS into univariate one ω(xi) over finite algebra. Then, the paper uses interval method to implement real root isolation for each ω(xi). Finally, these real roots in different variants are combined to take as the possible solution of PS. We find the true solutions of PS from these combination by using interval analysis. In the paper, the theorem about properties of interval solution of PS is proposed and proved. The-advantage of our method is no error accumulation and easy to be parallelized. Besides these, it can find all real solutions with arbitrary precision for nonlinear algebraic equations.
作者 张瑾 李耀辉
出处 《江南大学学报(自然科学版)》 CAS 2007年第2期144-149,共6页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家973计划项目(NKBRSF-2004CB318003)
关键词 混合计算 GROEBNER基 特征值 区间分析 实根求解 symbolic-numerical computation Groebner bases eigenvalue interval analysis realroot isolation
  • 相关文献

参考文献15

  • 1David A Cox, John B Little, Donald B O'Shea. Using Algebric Geometry[M]. New York: Springer-Verlag Inc,1998.
  • 2David A Cox, John B Little, Donald B O'Shea. Ideals, Varieties and Algorithm[M]. New York:Springer-Verlag Inc, 1992.
  • 3LI Yao-hui, XUE Ji-wei, FENG Yong. Solving nonlinear systems via preprocessing and interval method[J]. Journal of Sichuan University: Engineering Science Edition, 2004,36 (5) : 86-93.
  • 4李耀辉,刘保军.非线性代数方程组实根求解研究现状综述[J].武汉科技大学学报,2004,27(3):326-330. 被引量:8
  • 5Granvilliers L. A symbolic-numberical branch and prune algorithm for solving non-linear polynomial systems[J]. J Universal Computer Science, 1998,4(2) :125-146.
  • 6Schichl H, Neumaier A. Interval analysis-basics[EB/OL]. (1998-01-15)[2003-10-05]. http://solon, cma. univie, ac. at/~neum/interval. html.
  • 7Herbort S, Ratz D. Improving the efficiency of non linear-system-solver using a componentwise newton methodl[EB/OL]. ( 1998-08-05 )[2004-05-20]. http ://citeseer. nj. nec. com/herbort97improving, html.
  • 8Caprani O, Madsen K, Nielsen H B. Introduction to interval analysis[EB/OL]. (2000-04-12)[2004-08-16]. http://www.itum.dtu.dk.
  • 9Kearfott R B. Interval computations:introduction, uses and resources[J]. Euromath Bulletin, 1996, 2(1):95-112.
  • 10XUE J, CHEN D, LI Y, et al. Isolating real solutions of non-linear systems using a hybrid algorithm[C]// IADIS Applied Computing 2004 Conference. Portugal,Lisbon:[s.n.]. 2004 : 172-176.

二级参考文献11

  • 1David A Cox,John B Little,Donald B, et al Using Algebric Geometry[M]. New York: Springer Verlag Inc, 1998.
  • 2David A Cox,John B Little, Donald B, et al Ideals, Varieties and Algorithm[M]. New York: Springer Verlag Inc, 1992.
  • 3Wang D K Zero Decomposition Algorithms for System of Polynomial Equations[Z]. MM Research Prepints, Beijing: MMRC, AMSS, Academia Sinica, 1999,(18) 200-207.
  • 4Chionh E W,Zhang M,Goldman R N. Fast Computation of the Bezout and Dixon Resultant Matrices[J]. J Symbolic Computation,2002, 33: 13-29.
  • 5Arnon D S,Collins G E. Cylindrical Algerbraic Decomposition I: The Basic Algorithm[J]. SIAM J Comput, 1983,13(4)
  • 6Moore R E,Yang C T. Interval Analysis I[Z]. Technical Document LMSD-285875 , 1959.
  • 7Caprani O Madsen K,Nielsen H B. Introduction to Interval Analysis[EB/OL]. http://www.itum.dtu.dk
  • 8Hentenryck P Van,McAllester D,Kapur D. Solving Polynomial Systems Using a Branch and Prune Approach[J], SIAM Journal on Numerical Analysis,1997, 34(2) 797-927.
  • 9Herbort S,Ratz D. Improving the Effciencicy of Non linear System Solver Using a Componentwise Newton Method[EB/OL] http://citeseer.nj.nec.com/herbort97improving.html,1997.
  • 10Kearfott R B. Preconditioners for the Interval Gauss seidel Method[J]. SIAM J Num Anal,1990, 27(3)809-822.

共引文献7

同被引文献8

  • 1李耀辉,薛继伟,冯勇.基于预处理和区间计算的非线性方程组实根求解(英文)[J].四川大学学报(工程科学版),2004,36(5):86-93. 被引量:5
  • 2Collins G E, Loos R. Real zeros of polynomials. Computer algebra: Symbolic and algebraic computation[M]. Wien New York: Springer, 1982:88-94.
  • 3Johnson J R. Algorithms for polynomial real root isolation. Quantifier elimination and cylinderical algebraic decomposition [M]. Wien New York; Springer- Verlag, 1998: 269-299.
  • 4Rouillier F, Zimmermann P. Efficient isolation of polynomial's real roots[J]. Journal of Computational and Applied Mathematics, 2004,162 . 33-50.
  • 5Zhang T, Xia B. A new method for real root isolation of univariate polynomials [J].Mathematics in Computer Selenee, 2007, 1 (2) : 305-320,.
  • 6Akritas A G, Bocharov A V, Strzebonski A W. Implementation of real root isolation algorithms in Mathematiea[C]//Abstracts of the International Con- ference on Interval and Computer-Algebraic Methods in Science and Engineering (Interval's 94). Petersburg, Russia:[s. n. ], 1994 . 23-27.
  • 7Xia B, Zhang T. Real solution isolation using interval arithmetic [J].Computers and Mathematics with Applications, 2006, 52(6-7): 853-860.
  • 8Xia B, Yang L. An algorithm for isolating the real solutions of semi-algebraic systems[J]. Journal Symb Comput, 2002, 34(5): 461-477.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部