期刊文献+

Hamilton-Jacobi-Bellman方程的罚有限元估计

The Penalty-Finite Element Approximation of Hamilton-Jacobi-Bellman Epuations
下载PDF
导出
摘要 本文的研究对象为Hamilton-Jacobi-Bellman方程,在对该方程作出有限元估计的基础上利用罚有限元方法对其结果进行改进,并得出相应的收敛性和误差估计。 This paper deals with the penalty-finite element approximation of Hamilton-Jacobi-Bellman Equations. It is shown that convergence and quasi-optimal-error estimate are established, involving a weakly coupled system of quasi-variational inequalities for the solution of HJB equations.
作者 薛莲 程晓良
出处 《运筹与管理》 CSCD 2007年第2期69-71,77,共4页 Operations Research and Management Science
基金 国家自然科学基金资助项目(10471129)
关键词 计算数学 罚有限元 HJB方程 拟变分不等式 numerical mathematics penalty-finite element HJB equations quasi-variational inequalities
  • 相关文献

参考文献6

  • 1Boulbrachene M,Haiour M.The finite element approximation of Hamilton-Jacobi-Bellman equations[J].Computers and Mathematics with Applications,2001,41:993-1007.
  • 2Evans L,Friedman A.Optimal stochastic switching and the dirichlet problem for the Bellman equations[J].Trasnsactions of the American Mathematical Society,1979,253:365-389.
  • 3Lions P L,Menaldi J L.Optimal control of stochastic integrals and Hamilton Jacobi Bellman equations[J].SIAM Control and Optimization,1979,20:77-100.
  • 4Dumont Cortey P.Sur l'analyse numerique des équations de Hamilton Jacobi Bellman[J].Mathematical Methods in the Applied Sciences,1987,21:17-38.
  • 5Kikuchi N.Convergence of a penalty-finite element approximation for an obstacle problem[J].Numerical Mathematics,1981,37:105-120.
  • 6Bercovier M.Perturbation of mixed variational problems,application to mixed finite element method[J].Numerical Analysis,1978,12:211-236.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部