摘要
本文的研究对象为Hamilton-Jacobi-Bellman方程,在对该方程作出有限元估计的基础上利用罚有限元方法对其结果进行改进,并得出相应的收敛性和误差估计。
This paper deals with the penalty-finite element approximation of Hamilton-Jacobi-Bellman Equations. It is shown that convergence and quasi-optimal-error estimate are established, involving a weakly coupled system of quasi-variational inequalities for the solution of HJB equations.
出处
《运筹与管理》
CSCD
2007年第2期69-71,77,共4页
Operations Research and Management Science
基金
国家自然科学基金资助项目(10471129)
关键词
计算数学
罚有限元
HJB方程
拟变分不等式
numerical mathematics
penalty-finite element
HJB equations
quasi-variational inequalities