期刊文献+

GARCH模型对期铜市场风险的研究 被引量:3

Research on Copper Futures Risk by GARCH Model
下载PDF
导出
摘要 期货市场是一个高风险的市场,因此需要有效地控制并且监管风险。本文以上海期铜市场97年到04年的收盘价格为研究样本,通过拉格朗日检验,发现价格收益率序列服从ARCH过程,在正态、student-t和GED三种分布假设下,估计了GARCH(1,1)模型的参数,结果表明student-t假设下模型的拟和程度较好,然后利用EGARCH(1,1)-M模型检验了上海期铜市场杠杆效应和波动集群效应。最后在两种置信水平下,利用GARCH(1,1)和Risk Metrics方法计算了期铜市场每天的VaR,Kupiec检验表明基于t分布的GARCH(1,1)模型能更准确地反映上海期铜市场的风险。 Futures market is of high risk, so we need to control its risk efficiently. We examine the daily returns of the copper futures in SHFE(Shanghai Futures Exchange) from 1997 to 2004. the Lagrange Multiplier test verifie that the returns series of the copper futures is an ARCH process. Then we estimate the parameters of GARCH (1,1) with three distributions (normal, student-t, generalized error distributions). Better results are achieved when using student-t & GED distribution. EGARCH(1,1)-M model shows there exists the effect of leverage and persistence of volatility in the copper futures of SHFE. The daily VaRs of the copper futures in SHFE are computered with GARCH(1,1) and riskmetrics (95 and 99 percent confidence interval respectively). The Kupiec test indicates that GARCH(1,1)-t model reflects the real market risk more accurate than GARCH (1,1)-N and risk metrics.
作者 邵延平
出处 《运筹与管理》 CSCD 2007年第2期108-112,共5页 Operations Research and Management Science
关键词 GARCH模型 杠杆效应 VaR铜期货 GARCH model leverage VaR copper futures
  • 相关文献

参考文献8

  • 1Engle R F,Autoregressive conditional heteroscedasticity with estimates of the variance of U.K.inflation[J].Econometrica,1982,50:987-1008.
  • 2Bollerslev Tim.Generalized autoregressive conditional heteroskedasticity[J].Journal of Econometrics,1986,31:307-327.
  • 3徐剑刚.期货报酬时间序列统计特性[J].统计研究,1997,14(3):70-72. 被引量:22
  • 4华仁海,仲伟俊.我国期货市场期货价格收益、交易量、波动性关系的动态分析[J].统计研究,2003,20(7):25-30. 被引量:79
  • 5Bollerslev T.A conditional heteroskedasticity time series model for speculative prices and rates of return[J].Review of Economics and Statistics,1987,69:542-547.
  • 6Nelson D.Conditional heteroskedasticity in asset returns[J].Econometrica,1991,59:349-370.
  • 7Jorison.P Value at risk:the new benchmark for controlling market risk[M].New York:The McGraw-Hill Companies,1997.
  • 8Kupiec P H.Techniques for verifying the accuracy of risk measurement model[J].The Journal of Derivatives,1995,(2).

二级参考文献15

  • 1Chen, G., Firth, M. and Rui, O. M. ( 2001 ) : The Dynamic Relation Between Stock Returns, Trading Volume, and Volatiity[ J]. The Financial Review, 38,153 ~ 174.
  • 2Clark, P. K. ( 1973 ) : A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices[J]. Econometrica,41,135 ~ 155.
  • 3Copeland, T. E. (1976) : A Model of Asset Trading under the Assumption of Sequential Information Arrival[ J]. Journal of Finance, Vol. 31,1149 ~ 1168.
  • 4Crouch, R. L. (1970) : The Volume of Transactions and Price Changes on the New York Stock Exchange[J]. Financial Analysts Journal,Vol 26,104 ~ 109.
  • 5Engle, R. (1982) : Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation[J]. Econometrica, 50,987 ~ 1007.
  • 6Karpoff, J.M. ,(1987) :The Relation between Price Changes and Trading Volume:A Survey[J] .Journal of Financial and Quantitative Analysis, Vol.T2,109 ~ 126.
  • 7Kocagil, A. E., and Shachmurove, Y. ( 1998 ) : Return-Volume Dynamics in Futures Markets[J] .The Journal of Futures Markets, Vol. 18,399 ~ 426.
  • 8Lamoureux, c., and Lastrapes, W. (1990) : Heteroskedasticity in Stock Return Data: Volume versus GARCH Effect [ J]. Journal of Finance, Vol 45,221 ~ 229.
  • 9McCarthy, J., and Najand, M. ( 1993 ) : State Space Modeling of Price and Volume Dependence: Evidence from Currency Futures[ J]. The Journal of Futures Markets, Vol. 13, 335 ~ 344.
  • 10Morgan, I. G. ( 1976 ) : Stock Prices and Heteroskedasticity[ J] .Journal of Business,49,496 ~508.

共引文献92

同被引文献35

  • 1王燕辉,王凯涛.股票交易量对收益率波动性的影响-对深市个股的实证分析[J].金融研究,2004(12):81-88. 被引量:26
  • 2杨湘豫,周屏.GARCH模型在开放式基金中的实证研究[J].系统工程,2006,24(4):73-76. 被引量:17
  • 3萧楠.ARMA-GARCH模型对上海铜期货市场收益率的建模与分析[J].运筹与管理,2006,15(5):128-132. 被引量:12
  • 4Bollerslev T. Generalized autoregressive conditionalheteroskedasticity [J].Journal of Economics, 1986, (31):307-327.
  • 5Taylor S J. Financial returns modelled by the product of two stochastic peocesses--A study of daily sugar prices 19 61- 7 5[J]. Time Series Analysis : Theory andPractice, 1982.
  • 6McNeil A J, Frey R. Estimation of tail-related risk measures for heteroseedastie financial time series: An extreme value approach [J].Journal of Empirical Finance, 2000,7(3) :271-300.
  • 7Kupiec P H. Techniques for verifying the accuracy of risk measurement models [J ]. The Journal of Derivatives, 1995 : 73- 84.
  • 8Christoffersen P. Evaluating interval forecasts[J]. International Economic Review, 1998,39 ( 4 ) : 841 -862.
  • 9Eagle R F, Manganelli S. CAViaR: Conditional autoregressive Value at Risk by regression quantiles [J]. Journal of Business -. Economic Statistics, 2004,22(4):367-381.
  • 10Fernandez C, Steel M. On Bayesian modeling of fat tail and skewness[J]. Journal of the Royal Statistic Society ,Part B, 2003,65 : 159- 174.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部