期刊文献+

期望和残差收益估计不可靠的鲁棒模型 被引量:2

Robust Model with Unreliable Estimates of Expected Returns and Residual Returns
下载PDF
导出
摘要 投资优化问题的最优策略会随着输入参数的扰动而出现敏感的变化,针对投资优化问题中出现的随机变量的参数估计不可靠的情况,本文引入不确定集合描述随机收益的有关矩信息,提出了投资优化问题的一个鲁棒性模型,并采用数学规划的理论和方法,给出了该模型的最优策略和有效前沿的解析表示。本方法能够为采用保守策略的、对不确定性厌恶的投资者提供一种最优的投资策略。 Optimal strategies of a portfolio optimization problem are often sensitive to perturbations in the parameters of the optimization problem. To investigate the portfolio optimization problem, we introduce uncertainty set describing the moments of returns and propose a robust approach which enables us to ob- tain explicit formula solutions and an efficient frontier when the estimates of parameters of uncertainty vector returns are unreliable. This approach is capable of solving the optimal portfolios for an uncertainty-averse investor who takes a conservative viewpoint.
出处 《运筹与管理》 CSCD 2007年第2期113-116,共4页 Operations Research and Management Science
关键词 投资组合选择 有效前沿 数学规划 鲁棒模型 portfolio selection efficient frontier mathematical programming robust model
  • 相关文献

参考文献13

  • 1Markowitz H.Portfolio selection[J].Journal of Finance,1952,7:77-91.
  • 2Markowitz H.Portfolio selection:efficient diversification of investment[M].New York:John Wiley & Sons,1959.
  • 3Black F,Litterman R.Global portfolio optimization[J].Financial Analysts Journal,1992,48:28-43.
  • 4Michaud R O.Efficient asset management:a practical guide to stock portfolio mangement and asset allocation,financial management association,survey and synthesis series[M].Boston:HBS Press,1998.
  • 5Merton R.On estimating the expected return on the market:an exploratory investigation[J].Journal of Financial Economics,1980,8:323-362.
  • 6Broadie M.Computing efficient frontiers using estimated parameters[J].Annals of Operations Research,1993,45:21-58.
  • 7Chopra V K.Improving optimization[J].J.Investing,1993,8:51-59.
  • 8Halldórsson B V,Tütüncü R H.An interior-point method for a class of saddle-point problems[J].Journal of Optimization Theory and Applications,2003,116:559-590.
  • 9Tütüncü R H,Koenig M.Robust asset allocation[J].Annals of Operations Research,2004,132:286-321.
  • 10Goldfarb D,Iyengar G.Robust portfolio selection problems[J].Mathematics of Operations Research,2003,28(1):1-38.

同被引文献24

  • 1MARKOWITZ H. Portfolio selection[J]. Journal of Finance,1952, 7: 77-91.
  • 2LI D, NG W L. Optimal dynamic portfolio selection.. multiperiod mean-variance formulation [J]. Mathe- matical Finance, 2000, 10(3) : 387-406.
  • 3ZHU S S, LI D, WANG S Y. Risk control over bankruptcy in dynamic portfolio selection: a general- ized mean-variance formulation [J]. IEEE Transac tions on Automatic Control, 2004, 49: 447-457.
  • 4LEIPPOLD M, TROJANI F, VANINI P. A geo metric approach to multiperiod mean-variance optimi- zation of assets and liabilities [J]. Journal of Eco- nomics Dynamics and Control, 2004,28 : 1079-1113.
  • 5CAKMAK U,DZEKICI S. Portfolio optimization in stochastic markets[J]. Mathematics Method of Oper- ation Research, 2006, 63: 151-168.
  • 6ZHOU X Y, LID. Continuous time mean-variance portfolio selection: a stochastic LQ framework [J]. Applied Mathematics and Optimization, 2000, 42 (1): 19-33.
  • 7ZHOU X Y, LI D. Continuous time mean-variance portfolio selection; a stochastic LQ framework [J]. Applied Mathematics and Optimization, 2000, 42 (1): 19-33.
  • 8LIMA E B, ZHOU X Y. Mean-variance portfolio selection with random parameters [J]. Mathematics of Operation Research, 2002, 27 : 101-120.
  • 9XIE S X, LI Z F, WANG S Y. Continuous-time portfolio selection with liability: mean-variance mod- el and stochastic LQ approach [J]. Insurance: Mathematics and Economic, 2008, 42: 943-953.
  • 10DENG X T, LI Z F, WANG S Y. A minimax port- folio selection strategy with equilibrium [J]. Euro- pean Journal of Operational Research, 2005, 166: 278-292.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部