期刊文献+

优美图的嵌入 被引量:3

Any graceful graph is the subgraph of another graceful graph
下载PDF
导出
摘要 研究了优美与优美图之间的一种关系,每个优美图都可嵌入到另一个优美图中.通过构造证明了:设G1是任一个优美图,则必存一个优美图G2,使得G1是G2的真子图.这一结论给出了由一个优美图构造一类优美图的一种方法,并用此方法给出了几类优美图. A kind of relationship between the grace and the graceful graph is studied which shows that any graceful graph can be embedded into another one. It is proved that if graph G1 is any graceful graph, there must be a graceful graph G2 such that G is a real subgraph of graph G2. Thus, a series of graceful graphs can be constructed from one graceful graph. And several kinds of graceful graphs are produced using this method.
作者 唐保祥
出处 《上海师范大学学报(自然科学版)》 2007年第2期24-27,共4页 Journal of Shanghai Normal University(Natural Sciences)
关键词 优美图 极大优美图 极小优美图 联图 graceful graph maximal graceful graph minimal graceful graph join of two graphs
  • 相关文献

参考文献5

  • 1BONDY D A, MURTY U S R.图论及其应用[M].吴望名,李念祖,吴兰芳,等译.北京:科学出版社,1984.
  • 2RINGEL G. Problem 25 in theory of graphs and its applications, Proc[ C]. Symposium Smolenice, 1963: 162.
  • 3GOLOMB S W. How to number a graph, Graph theory and computing[ M]. New York:Academic Press, 1972:23 -37.
  • 4唐保祥.2类包含K_4的优美图及其注记[J].河北师范大学学报(自然科学版),2001,25(3):304-305. 被引量:6
  • 5唐保祥.一类包含优美树的优美图[J].上海师范大学学报(自然科学版),1998,27(2):18-20. 被引量:3

二级参考文献1

  • 1BONDY J A 等 吴望名等(译).图论及其应用[M].北京:科学出版社,1984..

共引文献6

同被引文献21

  • 1潘伟,路线.图K_2∧K_(m,n)的优美性[J].吉林大学学报(理学版),2004,42(3):365-366. 被引量:6
  • 2唐保祥.一类包含优美树的优美图[J].上海师范大学学报(自然科学版),1998,27(2):18-20. 被引量:3
  • 3杨元生,容青,徐喜荣.一类优美图[J].Journal of Mathematical Research and Exposition,2004,24(3):520-524. 被引量:14
  • 4魏丽侠,贾治中.非连通图G_1uG_2及G_1uG_2uK_2的优美性[J].应用数学学报,2005,28(4):689-694. 被引量:26
  • 5严谦泰.图P_(2r,2m)的优美标号[J].系统科学与数学,2006,26(5):513-517. 被引量:23
  • 6GOLOMB S W. How to number a graph[ M]//Graph Thery and Computing. New York: Academic Press, 1972:23-37.
  • 7KATHIESAN K M. Two classes of graceful graphs[J]. Ars Combinatoria, 2000, 55:129-132.
  • 8WEI Lixia, YAN Shoufeng, ZHANG Kunlong. The researches on gracefilness of two kinds of unconnected graphs [J].Journal of Shandong University: Natural Science, 2008, 43 (8) :90-96.
  • 9CAI Hua,WEI Lixia, LU Xianrui. Gracefulness of unconnected graphs ( P1 ∨ P2 ) ∪ Gr, ( P, ∨ P, ) ∪( P3 ∨ Kr ) and W, ∪ St (m)[J].Journal of Jilin University: Science Edition, 2007, 45 (4) :539-543.
  • 10WEI Lixia, JIA Zhizhong. The gracefulness of unconnected graphs G1∪G2 and G1 ∪ G2 ∪ K2[J].Acta Mathematicae Applicatae Slnica, 2005, 28(4):689-694.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部