摘要
在亚纯函数值分布论中,有一类重要的精密的杨乐不等式.为求得亚纯函数相对于多项式函数的值分布,基于Nevanlinna理论和函数论分析的方法将杨乐不等式中计数函数的常数推广为多项式函数,并得到了相应的亏量和的上界,结果显示亚纯函数相对于多项式的值分布的不等式也是精密的.
There is an important precise Yang Le inequality in the value distribution theory of meromorphic function. To get the value distribution of meromorphic function to the polynomial function, the constants of the counting function in the inequality is generalized to polynomial function based on the Nevanlinna theory and function theory analysis method, and get the corresponding deficiency sum upper bound. The results show the inequality of value distribution of meromorphic function to the polynomial function is also precise.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第4期125-128,共4页
Journal of Chongqing University
关键词
亚纯函数
不等式
多项式
亏量
meromorphic function
inequality
polynomial
deficiency