期刊文献+

一维线性标量守恒律初边值问题的有限元方法的收敛性

The Convergence of a Finite Element Method for the Initialboundary Value Problem to Linear Scalar Conservation Laws
下载PDF
导出
摘要 研究了一维线性标量守恒律初边值问题的弱解,分析了有限元方法的收敛性.通过使用对空间导数的估计、弱紧性和奇异摄动理论证明了有限元方法的收敛性. In this paper, a finite element method for linear scalar conservation laws is analyzed. Theconvergence towards the weak solution is proved for one-dimensional space with initial and boundaryconditions by using some subtle techniques such as the estimate of spatial derivative, perturbationtheory and weak compactness.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2007年第4期428-432,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金资助(10471009) 教育部新优秀人才基金资助(04-0203) 北京市自然科学基金资助(1052001)
关键词 有限元方法 守恒律 摄动理论 弱紧性 收敛性 finite element method conservation laws perturbation theory weak compactness convergence
  • 相关文献

参考文献1

二级参考文献15

  • 1Ciarlet,PG. The finite element method for elliptic problems . 1978
  • 2C.Johnson,Szepessy.On the convergence of a finite clement method of a nonlinear hyperbolic conservation law. Mathematics of Computation . 1987
  • 3D.Kr(o|¨)ner,M.Rokyta.Convergence of upwind finite volume schemes on unstructured grids for scalar conservation laws in two dimensions. SIAM Journal on Numerical Analysis . 1994
  • 4Cockbum B,Coquel F,Lefloch P.An error estimate for finite volume methods for multidimensional conservation laws. Math Comut . 1994
  • 5B. Cockburn,S. Hou,C. W. Shu.The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Mathematics of Computation . 1990
  • 6B. Cockburn,C. W. Shu.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General Framework. Mathematics of Computation . 1989
  • 7R.J. DiPerna.Measure-valued solutions to conservation laws. Archive for Rational Mechanics and Analysis . 1985
  • 8T. J. R. Hughes,L. P. Franca,M. Mallet.A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Computational Methods in Applied Mathematics . 1986
  • 9D. Kroner,S. Noelle,M. Rokyta.Convergence of higher order upwind finite volume Schemes onunstructured grids for scalar conservation laws in several space dimensions, Numer. Mathematica Journal .
  • 10A. Szepessy.Convergence of a shock capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Mathematics of Computation . 1989

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部