期刊文献+

模糊主分量分类器 被引量:1

Fuzzy principal component classifier
下载PDF
导出
摘要 W.J.Hu提出的主分量分类器(PCC)通过最大化两类样本在分类面法方向上的投影代数和,实现样本分类.PCC是基于样本的统计平均特性,所以少量的野值对分类面方向的确定影响较小,而SVM对野值较为敏感.PCC与支持向量机相比具有较好的鲁棒性.但是PCC对野值的处理等同于其他样本,尽管有效果,但仍会影响分类面的求取,同时也缺乏直观上(或物理上)的解释,而且没有考虑随机噪声对分类面的影响.鉴于此,在PCC的基础上进行改进,引入模糊思想,设计了一组模糊型的主分量分类器,进一步弱化野值和随机噪声对分类面的影响.人工数据集和Beachmark数据集上的实验证明了新分类器的有效性. Principal Component Classifier (PCC), a new linear classifier, was proposed by W. J. Hu. It separates the two-class samples through maximizing the algebraic sum of projection on the normal vector of justification plane. Based on statistically average character, PCC is immune to outliers, while support vector machine (SVM) is sensitive to outlier. On this point, PCC has better robustness compared to SVM. However, it is unreasonable for PCC to treats outlier as other normal samples. This also has no geometrical (or physical) interpretation.
出处 《安徽工程科技学院学报(自然科学版)》 2007年第1期45-50,共6页 Journal of Anhui University of Technology and Science
关键词 主分量分类器 支持向量机 野值 核化 principal component classifier support vector aachine outlier kernelized
  • 相关文献

参考文献9

  • 1Hu W J,Song Q.Principle component classifier.NIPS.2000 workshop on New Perpectives in Kernel-based Learning Methods in Breckenridge US[EB/OL].[2004-02-12].http://svm.first.gmd.de/.
  • 2杨绪兵,陈松灿.增强的主分量分类器[J].复旦学报(自然科学版),2004,43(5):769-772. 被引量:2
  • 3Müller K R.Mika S,Ratsch G,Tsuda K,Scholkopf B.An introduction to kernel-based learning algorithms[J].IEEE Transaction on Neural Network,2001,12(2)181-202.
  • 4Ruiz A.López-de-Teruel P.E.Nonlinear kernel-based statistical pattern analysis[J].IEEE Transaction on Neural Network,2001,12(1):16-31.
  • 5Vapnik V N.The nature of statistical learning theory[M].New York:Spinger-Verlag,1995.
  • 6Haykin S.Neural Networks:A Comprehensive Foundation[M],Second Edition.Pretice-Hall,Inc,2001.
  • 7Scholkopf B,Smola A,Müller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Compt.,1998,10:1 299-1 319.
  • 8James M Keller,Douglas J Hunt.Incorporating fuzzy membership functions into the perceptron algorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(PAMI),1985,7(6):693-699.
  • 9Hamza A B,Krim H.Image denoising:a nonlinear robust statistical approach[J].IEEE Transaction on Signal Processing,2001,49(12):3 045-3 054.

二级参考文献7

  • 1Hu W J,Song Q. Principle component classifier. NIPS'2000[EB/OL].http://svm.first.gmd.de./.2004-02-12.
  • 2Liu Ling, Chen Keke. Visualization of several datasets [EB/OL].http://disl.cc.gatech.edu /VISTA/demo_main.html.2003-12-12.
  • 3Hamza A B,Krim H. Image denoising:A nonlinear robust statistical approach[J]. IEEE Trans on Signal Processing, 2001,49(12):3045-3054.
  • 4Müller K R, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms[J].IEEE Trans on Neural Network,2001,12(2):181-202.
  • 5Schlkopf B, Smola A, Müller K R.Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Compt, 1998,10:1299-1319.
  • 6Ruiz A, López-de-Teruel P E. Nonlinear kernel-based statistical pattern analysis[J]. IEEE Trans on Neural Network, 2001,12(1):16-31.
  • 7Mika S, Rtsch G, Weston J, et al. Fisher discriminant analysis with kernels[A].In: Hu Y H, Larsen J, Wilson E,et al,eds. IEEE Neural Networks for Signal Processing 9 [C]. Piscataway, N J:IEEE,1999.41-48.

共引文献1

同被引文献6

  • 1杨绪兵,陈松灿.增强的主分量分类器[J].复旦学报(自然科学版),2004,43(5):769-772. 被引量:2
  • 2姜桂艳,温慧敏,杨兆升.高速公路交通事件自动检测系统与算法设计[J].交通运输工程学报,2001,1(1):77-81. 被引量:67
  • 3Hu W J, Song Q.Principle component classifier[EB/OL]. (2004-02-12 ) .http ://svm.first.gmd.de./.
  • 4Tong Hanghang,Li Chongrong,He Jingrui,et al.Anomaly internet network traffic detection by kernel principle component classifier[C]//Lecture Notes in Computer Science, 2005,3498: 476-481.
  • 5Yuan F, Cheu R L.Incident detection using support vector machines[J].Transportation Research Part C, 2003,11 : 309-328.
  • 6Chen Shuyan, Wang Wei, Qu Gaofeng.Traffic incident detection based on rough sets approach[C]//2007 International Conference on Machine Learning and Cybernetics,2007,7.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部