摘要
证明了Banach空间X中闭凸集D上的弱内向、非扩展映射T的平移不变性,并证明了当(I-T)(D)为闭集时T有不动点,进而针对李普希兹映射T给出了Tx=λx型方程解的存在性定理.这些结论推广并改进了某些重要结论.
This paper first proves the translation invarint property of weakly inward and nonexpensive on closed convex set in Banach space. Then, the fixed point theorem for T is established. At the same time, the existence theorem of the solution for equation Tx = Ax is obtained where T is Lipschitz map. Some of the results generalize and improve some important arguments in [3] and [4].
出处
《沈阳师范大学学报(自然科学版)》
CAS
2007年第2期156-157,共2页
Journal of Shenyang Normal University:Natural Science Edition
关键词
弱内向映射
李普希兹映射
不动点
方程解
weakly inward maps
Lipschitz maps
fixed point
solution of equation