期刊文献+

具有优良渐近参数的代数几何码(英文)

ALGEBRAIC GEOMETRY CODES WITH GOOD ASYMPTOTIC PARAMETERS
下载PDF
导出
摘要 本文讨论了一类具有好的渐近参数的代数几何码.通过对除子类数、高次有理除子数以及代数几何码的参数分析,得到一类码其渐近界优于Gilbert-Varshamov界和Xing界.在这两个界的交点处,渐近界有所改进. In this paper, we discuss a class of algebraic geometry codes (A-G codes) with good asymptotic parameters. Based on some analyses on a relation amony divisor class number, number of rational divisors of high degrees, and parameters of A-G codes, we obtain an asymptotic bound of a class, which is better than both the Gilbert-Varshamov and the Xing bounds. Our result shows that these two bounds can be improved significantly around the two points where they intersect.
作者 胡万宝
出处 《数学杂志》 CSCD 北大核心 2007年第3期271-275,共5页 Journal of Mathematics
关键词 代数几何码 渐近参数 Gilbert-Varshamov界 Xing界 algebraic geometry codes asymptotic parameters Gilbert-Varshamov bound Xing bound
  • 相关文献

参考文献6

  • 1GoppaV.D..Codes on algebraic curves(Russian)[J].Dokl.Akad.Nauk.Nauk SSR.1981,259:1289-1290.
  • 2Xing C.P..Nonlinear codes from algebraic curves improving the Tsfasman-Vladut-Zink bound[J].IEEE trans.Information Theory.2003,49:1653-1657.
  • 3Xing C.P..Algebraic geomtry codes with asymptotic parameters better than the Gilbert-Varshamov and tsfasman-Vladut-Zink bounds[J].IEEE Trans.Information Theory.2001,47:347-352.
  • 4Tsfasman M.A..Vladut S.G.and Zink T.Modular cures,shimura curves,and Goppa codes,better than Gilbert-Varshamov bound[J].Math.Nachrichtentech.1982,109:21-28.
  • 5Stichtenoth H..Algebraic function fields and codes[M].Berlin:Springer.1993.
  • 6Tsfasman M.A.,Vladut S.G..Algebraic geometry codes[M].The Northerlands:Kluwer.1991.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部