摘要
本文研究了拓扑空间上的连续映射扩充的问题.利用格论方法,获得了值域为局部紧Hausdorff空间的连续映射从稠密子空间连续扩充到整个空间的一个充要条件;推广了Blair的两个结果,并将其作为特例.
In this paper, we investigate the problem of extension of continuous mappings in a topological space. Using the lattice-theoretic approach to treat topological problems, we obtain a necessary and sufficient condition for a continuous mapping with a locally compact Hausdorff space as its codomain to be extended continuously to the whole space. This result is a generalization of Blair's two results.
出处
《数学杂志》
CSCD
北大核心
2007年第3期295-300,共6页
Journal of Mathematics
基金
国家自然科学基金资助项目(10471035)
关键词
广义连续性
可加性
伽罗瓦联络
对偶伪余
generalized-continuity
additivity
Galois connection
dual pseudo-complement