期刊文献+

一种预测细胞凋亡蛋白的亚细胞定位的新方法 被引量:2

A New Method for the Subcellular Location Prediction of Apoptosis Proteins
下载PDF
导出
摘要 细胞凋亡蛋白对生物体的发育、维持内环境稳定及人们理解细胞凋亡机制非常重要。文中提出了一种新的蛋白质序列特征提取方法—三肽离散源方法。计算了蛋白质序列中紧邻三联体的出现个数,利用离散增量极小化对凋亡蛋白进行定位预测;同时推广了张春霆等提出的内容平衡精度指数,使其能评估任意类的分类问题。实验结果表明:在凋亡蛋白定位预测研究中,三肽离散源方法在提高总体预测精度的同时,能够较好的解决样本不均衡问题;而内容平衡精度指数能比传统的总体预测精度更准确的评估预测算法的预测能力,有效的反映预测算法对样本不均衡问题的相容能力。 Apoptosis proteins play a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. A new encoding method based on tri-polypeptide composition is presented. By use of adjacent triune residues contents in the protein primary sequences, the increment of diversity is calculated to predict the subcellular location of apoptosis proteins. The content-balancing accuracy index presented by Zhang CT is extended to solve any classification problem. The experiment results show that for apoptosis protein subcellular location prediction, the method of tri-polypeptide diversity source can not only improve the overall prediction accuracy, but also solve the imbalance problem of samples. While the content-balancing accuracy index is much superior to the widely used overall prediction accuracy for evaluating prediction algorithms.
出处 《激光生物学报》 CAS CSCD 2007年第2期249-252,F0003,共5页 Acta Laser Biology Sinica
基金 国家自然科学基金资助(60603054)
关键词 细胞凋亡蛋白 亚细胞定位 三肽组成 离散增量 apoptosis protein subcellular location tri-polypeptide composition increment of diversity
  • 相关文献

参考文献13

  • 1JACOBSON M D,WEIL M,RAFF M C.Programmed Cell Death in Animal Development[J].Cell,1997,88:347-354.
  • 2KAUFMANN S H,HENGARTHER M O.Programmed Cell Death:Alive and Well in the New Millennium[J].Trends Cell Biol,2001,11:526-534.
  • 3NAKASHIMA H,NISHIKAWA K.Discrimination of Intracellular and Extracellular Proteins using Amino Acid Composition and Residue-pair Frequencies[J].J Mol Biol,1994,238:54-61.
  • 4CEDANO J,ALOY P,Perez-Pous J A,et al.Relation between Amino Acid Composition and Cellular Location of Proteins[J].J Mol Biol,1997,266:594-600.
  • 5REINHARDT A,HUBBARD T.Using Neural Networks for Prediction of the Subcellular Location of Proteins[J].Nucleic Acids Res,1998,26:2230-2236.
  • 6CHOU K C,ELROD D W.Protein Subcellular Location Prediction[J].Protein Eng,1999,12:107-118.
  • 7李凤敏,李前忠.蛋白质亚细胞定位的识别[J].生物物理学报,2004,20(4):297-306. 被引量:11
  • 8ZHOU G P,DOCTOR K.Subcellular Location Prediction of Apoptosis Proteins[J].Proteins,2003,50:44-48.
  • 9陈颖丽,李前忠.用离散量方法预测细胞凋亡蛋白的亚细胞位置[J].内蒙古大学学报(自然科学版),2004,35(4):413-417. 被引量:3
  • 10黄静,石峰,周怀北.利用支持向量机和蛋白质非稳定性指标预测凋亡蛋白类型[J].生物信息学,2005,3(3):121-123. 被引量:3

二级参考文献15

  • 1[1]EvanG, Littlewood TA. matter of life and cell death[J].Science,1998, 281:1317 - 1322.
  • 2[2]Zhou GP, Kutbuddin Doctor. Subcelluar location of Apoptosis proteins[J].Proteins:Structure, Function, and Genetic,2003, 50:44-48.
  • 3[3]Chou KC, Elrod DW. Prediction of membrane protein types and subcellular locations[J].Proteins, 1999,34:137- 153.
  • 4[4]Chou KC, Elr od DW. Protein subcellular location prediction[ J]. Protein Eng., 1999, 12: 107-118.
  • 5[5]Chou KC. Prediction of protein subcellular locations by incorporating quasi-sequence- order effect[J].Biochem. Biophys. Res. Commun., 2002, 19:477-483.
  • 6[6]Chou KC. Prediction of protein cellular attributes using pseudo amino acid composition[J]. Proteins, 2001,43:246 - 255.
  • 7[7]Cai YD, Liu XJ, Xu XB, Chou KC. Support vector machines for prediction of protein subcellular location by incorporating quasi - sequence- onder effect. J. Cell. Biochem., 2002, 84: 343-348.
  • 8[8]Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence[J]. Protein Eng. ,1990, 4: 155- 161.
  • 9[9]Pan F, Zarate J, Bradley TM. A homolog of the E3 ubiquitin ligase Rbx1 is induced during hyperosmotic stress of salmon[J]. J Physiol Regulatory Integrative Comp Physiol,2002, 282:1643 - 1653.
  • 10[10]Ding CH, Dubchak I. Multi - class protein fold recognition using support vector machines and neural networks [ J ]. Bioinformatics,2001, 17: 349-358.

共引文献12

同被引文献18

  • 1姜小莹,朱俊东,李晓波,张同亮.使用伪氨基酸组成和模糊支持向量机预测蛋白质结构类[J].生物物理学报,2008,24(1):43-48. 被引量:2
  • 2胡秀珍,李前忠.用离散量的方法识别蛋白质的超二级结构[J].生物物理学报,2006,22(6):424-428. 被引量:16
  • 3陈颖丽,李前忠,杨科利,樊国梁.基于离散增量结合支持向量机方法的凋亡蛋白亚细胞位置预测[J].生物物理学报,2007,23(3):192-198. 被引量:8
  • 4CHOU K C, ELROD D W. Prediction of Membrane Protein Types and Subcellular Locations [ J ]. Proteins Struct Funct Genet, 1999, 34:137-153.
  • 5FENG Z P, ZHANG C T. Prediction of Membrane Protein Types Based on the Hydrophobic Index of Amino Acids [ J]. J Protein Chem, 2000, 19(4) :269-275.
  • 6CAIYD, LIU X J, XU X B, et al. SVM for Predicting Membrane Protein Types by Incorporating Quasi-Sequence-Order Effect [J]. IEGMD, 2002, 1:219-226.
  • 7CAI Y D, ZHOU G P, CHOU K C. Support Vector Machines for Predicting Membrane Protein Types by Using Functional Domain Composition [ J]. Biophys J, 2003, 84:3257-3263.
  • 8SHEN H B, CHOU K C. Using Optimized Evidence-Theoretic K-nearest Neighbor Classifier and Pseudo-Amino Acid Composition to Predict Membrane Protein Types [ J ]. Biochem Biophys Res Commun, 2005, 334:288-292.
  • 9SHEN H B, YANG J, CHOU K C. Fuzzy KNN for Predicting Membrane Protein Types from Pseudo-Amino Acid Composition [J]. J Theor Biol, 2006, 240:9-13.
  • 10WANG M, YANG J, XU Z J, et al. SLLE for Predicting Mem-brane Protein Types [ J]. J Theor Biol, 2005, 232:7-15.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部