期刊文献+

基于TOP-HAT滤波器算子的红外弱小目标检测算法 被引量:5

Optimized Design of Improved TOP-HAT Filter Based on Genetic Algorithms of Neural Network
下载PDF
导出
摘要 针对红外序列图像中运动弱小点目标的检测问题,设计了一种基于改进神经网络优化的修正T op-H at形态学滤波器算子。其中形态学滤波器的结构元素采用两层前馈神经网络,通过大量样本训练优化,将T op-H at运算作为一个整体当作一层,输出层节点定义为T op-H at运算后图像矩阵的最大值。实测数据的处理结果表明:针对低信噪比(RSN≈2)图像,在虚警概率≤5%情况下,优化的修正T op-H at形态学滤波器算子对复杂图像检测概率≥75%,与固定结构元素的T op-H at形态学滤波器相比检测概率提高了近8%,算法的运算时间仅增加了0.7m s。 An improved morphological Top-Hat filtering operator is designed based on the upgraded neural network for detecting the moving spot target in infrared image sequences. Two-layer feedforward neural network is adopted in structural element of the morphological Jilter. Through training and optimizing of a large quantity of samples, Top-Hat operator is taken as a whole layer, and the output layer nod is defined as maximum value of the image matrix after Top-Hat operation. The operator optimized with two-layer neural network can successfully suppress both background and noise. The output is the value of the structural element. Experimental results of the actual measurement show that by using the improved Top-Hat operator, the detection probability of images with low RsN(R SN≈2) is higher than 75% when false alarm probability is lower than 5%. Compared with fixed Top-Hat filter, the detection probability is improved by nearly 8%, and the time for calculation is only increased by 0.7 ms.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第2期213-217,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 航空科学基金(01C13001)资助项目
关键词 红外弱小目标检测 修正Top—Hat算子 遗传算法 神经网络 detection of infrared spot target improved Top-Hat genetic algorithm neural network
  • 相关文献

参考文献9

  • 1Jackway P T.Improved morphological Top-Hat[J].IEEE Electronics Letters,2000,14(6):1194-1195.
  • 2Hanbury A G,Serra J.Morphological operators on the unit circle[J].IEEE Transactions Image Processing,2001,12 (10):1842-1850.
  • 3叶斌,彭嘉雄.基于能量累积与顺序形态滤波的红外小目标检测[J].中国图象图形学报(A辑),2002,7(3):251-255. 被引量:24
  • 4邓湘金,彭海良.一种基于遥感图像的机场检测方法[J].测试技术学报,2002,16(2):96-99. 被引量:31
  • 5余农,吴常泳,李范鸣,等.自动目标检测的形态学神经网络与模拟退火学习算法[M].北京:中国科学出版社,2003:19-28.
  • 6Yonggwan W,Paul D G,Coffield P C.Morphological shared-weight networks with applications to automatic target recognition[J].IEEE Trans on Neural Networks,1997,8(5):1195-1203.
  • 7Ritter G X,Sussner P,Luis J.Morphological associative memories[J].IEEE Trans on Neural Networks,1998,9(2):281-293.
  • 8Grana M,Raducanu B.Some applications of morphological neural networks[C]// 8th International Conference on Neural Networks.Washington,DC,USA:CA,2001:518-523.
  • 9张弘,赵保军,史彩成.对低信噪比下的红外点目标高检测率的研究[J].系统工程与电子技术,2001,23(3):58-60. 被引量:13

二级参考文献7

共引文献64

同被引文献40

引证文献5

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部