期刊文献+

三角网格模型的细分曲面拟合 被引量:2

Subdivision Surface Fitting from Triangle Mesh
下载PDF
导出
摘要 提出一种用Loop细分曲面拟合三角网格模型的新算法。首先对网格模型进行特征识别,然后把经过简化和形状优化的网格作为拟合细分曲面初始控制网格。通过对控制网格顶点的循环修正、网格形状优化、局部自适应细分来求解拟合细分曲面控制顶点。该算法不仅避免了求解线性方程组,克服了拟合控制网格的扭曲现象,而且达到了用较少的控制网格拟合出反映物体细节特征并满足精度要求的分片光滑(片内除奇异点C1外其余C2连续)的Loop细分曲面的目的。实例表明,该算法用于测量数据的曲面重构是有效可行的。 A new algorithm is used to fit the Loop subdivision surface from the triangle mesh. All features of the original mesh model are first identified. A shape-optimization mesh simplification method is presented to simplify the dense triangle mesh as an initial control mesh. The vertex within the control mesh for subdivision surface fitting is located by the iterative modification, the mesh shape optimization and the local adaptive subdivision. The method avoids the solution of the linear equation system, meanwhile the distortion of the fitting control mesh is overcome. Moreover, the size of the control mesh, corresponding to the Loop subdivision surface fitting is smaller. The surface is reconstructed according to the given precision. The example shows characteristics of the original model and piecewise smooth (C^2 continuous everywhere except for the extraordinary vertices C^1). Experiments demonstrate that the algorithm is efficient and feasible on surface reconstruction from measured data.
作者 周海 周来水
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2007年第2期258-262,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 江苏省自然科学基金(BK2001408)资助项目 江苏省高校自然科学基金(04KJD430213)资助项目 高等学校优秀青年教师教学科研奖励计划资助项目
关键词 三角网格模型 LOOP细分曲面 逆向工程 曲面拟合 triangle mesh Loop subdivision surface reversion engineering surface fitting
  • 相关文献

参考文献11

  • 1Zorin D.Overview of subdivision schemes[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,2000:65-84.
  • 2Suzuki H,Takeuchi S,Kanai T.Subdivision surface fitting to a range of points[C]//The Seventh Pacific Conference on Computer Graphics and Applications.New York:ACM Press,1999:158-167.
  • 3Amenta N,Bern M,Kamvysselis M.A new voronibased surface reconstruction algorithm[C]//Proceeding of SIG-GRAPH 1998.New York:ACM Press,1998:415-421.
  • 4Takashi K.Converting subdivision surfaces from dense meshes[EB/OL].(2004-09-26)[2005-08-05].http:www.vis.uni-stuttgart.de/vmv01/dl/posters/15.pdf.
  • 5Ma Weiyin,Xiaohu M,Shiu K,et al.Subdivision surface fitting from a dense triangle mesh[EB/OL].(2003-10-21)[2005-08-05].http:www.computer.org/proceedings/gmp.htm.
  • 6Garland M,Heckbert S P.Surface simplification using quadric error metrics[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH.New York:ACM Press,1997:209-216.
  • 7Loop C.Generalized B-spline surfaces of arbitrary topology[C]//Computer Graphics Proceedings,ACM SIGGRAPH.New York:ACM Press,1990:347-356.
  • 8周海,周来水,王占东,钟大平.散乱数据点的细分曲面重建算法及实现[J].计算机辅助设计与图形学学报,2003,15(10):1287-1292. 被引量:11
  • 9Hoppe H.Piecewise smooth surface construction[C]//Computer Graphics Proceedings,ACM SIGGRAPH.New York:ACM Press,1994:295-302.
  • 10Halstead M,Kass M,De Rose T.Efficient,fair interpolation using Catmull-Clark surfaces[J].Computer Graphics,1993,27 (3):35-44.

二级参考文献12

  • 1Váredy T, Martin R R, Cox J. Reverse engineering of geometric models-An introduction [J]. Computer-Aided Design, 1997, 29(4) : 255-269.
  • 2DeRose T, Kass M, Tien T. Subdivision surface in character animation [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH [C]. New York: ACM.
  • 3Loop C. Smooth subdivision surfaces based on triangles[D].Utah: University of Utah, 1987.
  • 4Loop C. Triangle mesh subdivision with bounded curvature and the convex hull property [R]. Washington: Microsoft Corporation, 2001.
  • 5Zorin D. Overview of subdivision schemes [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH [C]. New York: ACM Press, 2000. 65-84.
  • 6Hoppe H, DeRose T, Duchamp T, et al. Piecewise smooth surface construction [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH [C]. Orlando, Florida: ACM Press, 1994. 295-302.
  • 7Suzuki H, Takeuchi S, Kanai T. Subdivision surface fitting to a range of points [A]. In: Proceedings of the 7th Pacific Conference on Computer Graphics and applications, Seoul, Korea, 1999. 158-167.
  • 8Umlauf G. Analyzing the characteristic map of triangular subdivision schemes[J]. Constructive Approximation, 2000,16(1): 145-155.
  • 9Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces [J]. Computer Graphics, 1993,27(3) : 35-44.
  • 10Schweitzer J E. Analysis and application of subdivision surfaces[D]. Washington: University of Washington, 1996.

共引文献10

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部