期刊文献+

不确定非线性环链系统的分散鲁棒控制 被引量:2

Decentralized robust control for the uncertain nonlinear circle-linked systems
下载PDF
导出
摘要 提出了环链系统和一类不确定非线性环链系统,利用线性代数理论,给出了实现环链系统的充要条件,运用李雅普诺夫稳定理论和矩阵理论研究了不确定非线性环链系统的鲁棒镇定,并给出了一种非线性鲁棒镇定控制器的设计,还考虑了一类非线性环链相似组合大系统,给出了分散鲁棒镇定条件,最后给出数值例子说明设计方法的有效性。 The circle-linked systems and a class of uncertain nonlinear circle-linked systems are proposed in this paper. Firstly, a sufficient and necessary condition for realization circle-linked systems is given by using linear algebra theory. Robust stabilization for the uncertain nonlinear circle-linked systems is then studied by employing Lyapunov stability theory and matrix theory, and a kind of nonlinear decentralized robust stabilization controller for the systems is also designed. Furthermore, a class of nonlinear circle-linked similar large-scale composite systems is considered and the condition of decentralized robust stabilization for the systems is obtained. Finally, a numerical example is given to illustrate the validity of the obtained design method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2007年第2期229-235,共7页 Control Theory & Applications
基金 国家自然科学基金(60574011) 辽宁省科技厅基金(20052022)
关键词 环链系统 鲁棒镇定 分散控制 状态反馈 circle-linked systems robust stabilization decentralized control state feedback
  • 相关文献

参考文献8

  • 1YANG G H,ZHANG S Y.Stability for large-scale composite systems with similarity[J].Automatica,1995,31(2):337-340.
  • 2张嗣瀛.复杂控制系统的对称性及相似性结构[J].控制理论与应用,1994,11(2):231-236. 被引量:57
  • 3TANAKA R.Symmetric failures in symmetric control systems[J].Linear Algebra and its Applications,2000,318(3):145-72.
  • 4LIN S,SUNI L K.Decentralized control for interconnected uncertain systems:extensions to higher-order uncertainties[J].Int J Control,1993,57(6):1453-1468.
  • 5LI B,ZHENG D Z.Decentralized output stabilization of interconnected systems using output feedback[J].IEEE Trans on Automatic Control,1989,34(1):1297-1300.
  • 6WANG R X,SANDEEP J,FARSHAD K.Decentralized adaptive output feedback design for large-scale nonlinear systems[J].IEEE Trans on Automatic Control,1997,42(5):729-735.
  • 7严星刚,林辉,戴冠中.基于微分同胚的非线性系统解耦线性化[J].纯粹数学与应用数学,1998,14(3):93-98. 被引量:2
  • 8BANKS S P,ALJURANI S K.Lie algebra and stability of nonlinear systems[J].Int J Control,1994,60(3):315-329.

二级参考文献49

共引文献57

同被引文献22

  • 1黄玮,张化光.一类多维连续线性系统的混沌反控制[J].东北大学学报(自然科学版),2004,25(8):727-730. 被引量:7
  • 2王宝华,王永成,杨成梧.基于非线性反馈方法的连续时间稳定线性系统的混沌反控制[J].电机与控制学报,2004,8(2):124-126. 被引量:9
  • 3刘保政,刘德宝,高立群.供不应求季节性商品的价格控制和生产销售决策模型[J].东北大学学报(自然科学版),2005,26(11):1040-1043. 被引量:4
  • 4张悦,张庆灵,赵立纯.离散广义Logistic模型的混沌控制[J].生物数学学报,2006,21(3):359-364. 被引量:4
  • 5Hanson F B, Ryan D. Optimal harvesting with both population and price dynamics[J]. Mathematical Biosciences, 1998, 148(2):129-146.
  • 6Armstrong C W, Skonhoft A. Marine reserves: a bio-economic model with asymmetric density dependent migration[J] .Ecological Econmomics, 2006, 57(3):466-476.
  • 7Yuechao Ma, Qingling Zhang, Xuefeng Zhang. Decentralized output feedback robust control for a class of uncertain nonlinear circle-linked large-scale systems [J]. International Journal of Information and Systems Sciences, 2006, 2(1):20-30.
  • 8Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Physical Review Letters, 1990, 64(11):1196-1199.
  • 9C Wang, SS Ge, Adaptive synchronization of uncertain chaotic systems via backstepping design [J]. Chaos, Solitons & Fractals, 2001, 12(7):1199-1206.
  • 10Chen G R, Yu X H. On time-delayed feedback control of chaotic systems[J]. IEEE Truns Circuits Syst I, 1999, 46(6):767-772.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部