摘要
针对传统方法中权值分配不合理会导致某个目标下非支配解遗失的问题,提出了均值自适应法、均值波动自适应法以及均值调节与传统算式相结合的三种的方法,使遗传算法中权值系数的设置得到了很大程度的改善,一定程度上提高了多目标下遗传算法的优化性能,并通过在车桥厂实例中的应用,取得了良好的效果,证明了此种方法的可行性和有效性。
The immoderate weights of fixed weight MOGA could lead to missing nondominated solutions about one of objectives. To solve this problem, three new methods are proposed: average adaptive weight approach, average and fluctuating adaptive evaluation function approach, average leading weight approach. They all greatly improve the performance of genetic algorithm. With the implement of these methods, they are proved to be feasible and efficienct.
出处
《组合机床与自动化加工技术》
2007年第4期11-14,共4页
Modular Machine Tool & Automatic Manufacturing Technique
基金
国家自然科学基金资助项目(50375043)
关键词
多目标遗传算法
适应度函数
权重
自适应
multi-objective genetic algorithm
fitness function
weight
adaptive