期刊文献+

华罗庚域研究的综述 被引量:13

The Summarizations on Research of Hua Domain
下载PDF
导出
摘要 华罗庚域的创建,统一了多复变中的对称典型域和蛋型域的研究,给多复变函数论提供了一个新的研究领域.对华罗庚域的研究,至今已经取得了一系列重要成果.本文简单介绍了华罗庚域创建的历史并着重介绍了华罗庚域上的Bergman核函数和Einstein-Khler度量的显表达式的计算,以及4个经典度量(Bergman度量,Carathéodory度量,Einstein-Kahler度量, Kobayashi度量)之间的等价关系,包括这些度量与Kobayashi度量的比较定理,阐述了Bergman度量等价于Einstein-Khler度量的这一丘成桐猜想在华罗庚域的特例Cartan-Hartogs域上也成立.着重指出了获得这些结果的新的思想和方法并提出了一些尚未解决的问题,以期更多的学者对华罗庚域感到兴趣并进行更深入的研究. The Hua domain makes the Cartan domain and the egg domain into a unit, and provides a new research field for several complex variables. Up to now a series of important results were obtained. In this paper, the author introduces the brief history of Hua domain and introduces the computations for Berman kernel functions and Einstein-Kahler metrics on Hua domains. And discuss the equivalences between four classical metrics (Bergman, Carathéodory, Einstein-Kahler and Kobayashi metrics). And prove that the Bergman metric is equivalent to the Einstein-Kahler metric on Cartan-Hartogs which is the special cases of Hua domains, that means the S-T Yau's conjecture is also true on Cartan-Hartogs domains. The author point out the new idea and new methods and give some open problems to expect the mathematicians interested in Hua domains and to lucubrate the Hua domains.
作者 殷慰萍
出处 《数学进展》 CSCD 北大核心 2007年第2期129-152,共24页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10471097) 高等学校博士学科点专项科研基金的资助
关键词 华罗庚域 不变度量的等价 BERGMAN度量 EINSTEIN-KAHLER度量 Hua domain equivalence of invariant metrics Bergman metrici Einstein-Kahler matric
  • 相关文献

参考文献22

二级参考文献63

  • 1李希宽,殷慰萍.一些Reinhardt域的Bergman核[J].科学通报,1993,38(19):1729-1732. 被引量:1
  • 2童武.关于某类Reinhardt域的Bergman核函数与解析自同构最大群[J].数学研究,1995,28(2):69-75. 被引量:1
  • 3郑学安,龚昇.Reinhardt域的Bergman核函数(Ⅱ)[J].中国科学(A辑),1995,25(7):683-692. 被引量:3
  • 4钟家庆 殷慰萍.非对称可递域的若干类型[J].数学学报,1981,24(4):587-613.
  • 5钟家庆 殷慰萍.非对称典型域的扩充空间[J].数学学报,1981,24(4):614-640.
  • 6殷慰萍.非对称第一类齐性Siegel域的酉几何(Ⅰ)[J].数学学报,1981,24(5):753-764.
  • 7陆启铿.多复变函数引论[M].北京:科学出版社,1961..
  • 8Cheng S Y, Yau S T. On the existence of a complete Kaehler metric on non-compact complex manifolds and the regularity of Fefferman's equation. Comm Pure Appl Math, 1980, 33:507-544.
  • 9Mok N, Yau S T. Completeness of the Kaehler-Einstein metric on bounded domain and the characterization of domain of holomorphy by curvature conditions. Proc Symposia Pure Math, 1983, 39:41-59.
  • 10Bland J. The Einstein-Kaehler metric on {|z|^2+|w|^2p< < 1}. Michigan Math J, 1986, 33:209-220.

共引文献74

同被引文献53

引证文献13

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部