期刊文献+

完全区间树顶点数目的大数律 被引量:3

The Law of Large Numbers of the Size of Complete Interval Trees
下载PDF
导出
摘要 本文讨论完全区间树顶点数目Sx的大数律,所采用的方法不同于单边区间树.文章包括三部分内容:首先探讨完全区间树所得以定义的概率空间,弄清楚它的结构,为强大数律的研究奠定理论基础.接着,针对完全区间树上的Sx的矩母函数不易求得的情况,另辟蹊径,求得Sx的期望和方差.最后,给出Sx的强弱大数律. In this paper, we mainly discuss the law of large numbers of Sx, the number of vertexes on an complete interval tree. The method we use is much different from that was used in the case of one-side interval trees. First, we discuss the probability space, on which the interval trees are defined; and make clean its construction; which is the foundation for researching the strong law of large numbers. Second, considering that the moment generation functions of r.v. Sx are difficult to obtain, we use a new method to calculate its expectations and variations. Finally, we prove the weak and strong law of large numbers of r.v Sx.
出处 《数学进展》 CSCD 北大核心 2007年第2期181-188,共8页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10071081) 教育部博士点基金 中国科学技术大学商水平大学建设基金资助
关键词 完全区间树 概率空间结构 大数律 complete interval tree probability space structure law of large numbers
  • 相关文献

参考文献10

  • 1Aldous,D.& Pitman,J.,Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent,Probab.Theory Relat.Fields,2000,118:455-482.
  • 2Devroye,L.,A note on the height of binary search trees,J.Assoc.Comput.Mach.,1986,33:489-498.
  • 3Fill,J.,Mahmoud,H.& Szpankowski,W.,On the distribution for the duration of a randomized leader election algorithm,Ann.Appl.Prob.,1996,6,1260-1283.
  • 4Itoh,Y.& Hosam,M.,One-side variations on interval trees,J.Appl.Prob.,2003,40:654-670.
  • 5Mahmoud,H.,Evolution of Random Seach Trees,John Wiley,New York,1992.
  • 6Mahmoud,H.,One-side variations on binary search trees,Ann.Inst.Statist.Math.,2003,55:885-900.
  • 7Petrov,V.V.,Limit Theorems of Probability Theory,Clarendon Press,Oxford,1995.
  • 8Prodinger,H.,How to select a loser,Discrete Math.,1993,120:149-159.
  • 9Rachev,S.T.,Probability Metrics and the Stability of Stochastic Models,Wiley,New York,1991.
  • 10Sibuya,M.& Itoh,Y.,Random sequential bisection and its associated binary tree,Ann.Inst.Statist.Math.,1987,39:69-84.

同被引文献27

  • 1LIU Jie,SU Chun,CHEN Yu.Limiting theorems for the nodes in binary search trees[J].Science China Mathematics,2008,51(1):101-114. 被引量:1
  • 2苏淳,缪柏其,冯群强.随机二叉搜索树的子树[J].应用概率统计,2006,22(3):304-310. 被引量:2
  • 3Kirschenhofer P. On the height of leaves in binary trees.J Combin Inform Sys Sci, 8:44-60 (1983)
  • 4Panholzer A, Prodinger H. Descendants and ascendants in binary trees. Discrete Math Theor Comput Sci, 1:247-266 (1997)
  • 5Devroye L, Neininger R. Distances and finger search in random binary search trees. SIAM J Comput, 33: 647-658 (2004)
  • 6Mahmoud H, Neininger R. Distribution of distances in random binary search trees. Ann Appl Probab, 13(1): 253-276 (2003)
  • 7Svante J. Left and right pathlenghts in random binary trees. Algorithmica, 46:419-429 (2006)
  • 8Devroye L. Applications of Stein's method in the analysis of random binary search trees. In: Chen L, Barbour A, eds. Stein's Method and Applications. Institute for Mathematical Sciences Lecture Notes Series, vol. 5. Singapore: World Scientific Press, 2005, 247-297
  • 9Drmota M. An analytic approach to the height of binary search trees. J Assoc Comput Mach, 29:89-119 (2001)
  • 10Drmota M. An analytic approach to the height of binary search trees Ⅱ. J Assoc Comput Mach, 50:333-374 (2003)

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部