摘要
本文利用概率方法讨论了关于Riemann Zeta函数ζ(i)的卷积∑k-2 i=2ζ(k-i),k≥4, Euler证明了这个卷积与级数∑n≥1 Hn/nk-1有关,使用Stirling展开我们发现了一个新的不同的结果.
The convolution of Riemann-zeta function ∑^k-2 i=2 ∑(k-i),k≥4 is discussed applying the probabilistic methods in this paper, a new evaluation formula of series involving the partial sums ξn(τ),different from Euler's result of the series ∑ n≥1 Hn/n^(k-1), is established by Stirling expansion.
出处
《数学进展》
CSCD
北大核心
2007年第2期226-230,共5页
Advances in Mathematics(China)
基金
Supported by the Mathematical Tianyuan Foundation of China(A0324645)