期刊文献+

超立方体的Laplace矩阵的谱 被引量:3

Spectra of Laplacian matrices of hypercubes
下载PDF
导出
摘要 本文解决了超立方体的Laplace矩阵的谱问题.n维超立方体Qn的Laplace矩阵L(Qn)的谱specL(Qn)=[0 2 4…2n C0nC1nC2n…Cnn],其中2t(t=0,1,2,…,n)为L(Qn)的n+1个不同的特征值,二项式系数Ctn为特征值2t的重数. For a simple graph G with vertex set {v1 ,v2 ,… ,vn } and adjacency matrix A(G), the Laplacian matrix of G is L(G)= D(G)-A(G), where D(G)= (dij ) is the diagonal matrix in which dii is the degree di of vi (Let d1 ≥d2≥…dn). the Laplacian matrix is of great importance in graph theory, and its spectra is an very useful algebraic tool. The hypercubes appear often as models in computer science because of the useful properties of these graphs have. In this paper, the spectra of the Laplacian matrices of hypercubes was obtained. The spectra of the Laplacian matrix of n-hypercube are [0 2 4…2n Cn^0 Cn^1 Cn^2 … Cn^n],where the 2t(t= 0,1,2,…, n) are the eigenvalues of the Laplacian matrix of n-hypercube, and the binomial coefficients Cn are the multiplicities of the eigenvalues 2t.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2007年第3期321-323,329,共4页 Journal of Zhejiang University(Science Edition)
基金 合肥工业大学科学研究发展基金资助项目(050507F) 国家自然科学基金资助项目(60575023)
关键词 超立方体 LAPLACE矩阵 特征值 图论 hypercube Laplacian matrix eigenvalue graph theory
  • 相关文献

参考文献7

  • 1LI Jiong-sheng,ZHANG Xiao-dong.A new upper bound for eigenvalues of Laplacian matrix of a graph[J].Linear Algebra and Its Applications,1997,265:93-100.
  • 2MERRIS R.A note on Laplacian graph eigenvalues[J].Linear Algebra and Its Applications,1998,285:33-35.
  • 3LI Jiong-sheng,ZHANG Xiao-dong.On the Laplacian graph eigenvalues[J].Linear Algebra and Its Applications,1998,285:305-307.
  • 4张晓东,李炯生.树的Laplace矩阵的最大和次大特征值[J].中国科学技术大学学报,1998,28(5):513-518. 被引量:22
  • 5郭曙光.单圈图的Laplace矩阵的最大特征值[J].高校应用数学学报(A辑),2001,1(2):131-135. 被引量:23
  • 6Béla Bollobás.Modern Graph Theory[M].New York:Springer-Verlag,1998:39-66,253-270.
  • 7许进.超立方体的谱[J].纺织高校基础科学学报,1999,12(2):97-101. 被引量:5

二级参考文献6

共引文献39

同被引文献12

  • 1贺金陵,郭继明.树的拉普拉斯特征值的部分和的可达上界[J].同济大学学报(自然科学版),2006,34(7):970-972. 被引量:2
  • 2COMELLAS F, DALFO C, A M FIOL, et al. The spectra of Manhattan street networks[J]. Linear Algebra and its Appllcations, 2008, 429: 1823-1839.
  • 3BONDY J A, MURTY U S. Graph Theory with Appilcations[M]. London: Macmillan, 1976.
  • 4EL-AMAWY A, LATIFI S. Properties and performance of folded hypercubes[J]. IEEE Transactions on Parallel and Distributed Systems, 1991, 2(3): 31-42.
  • 5张禾瑞.近世代数基础[M].北京:高等教育出版社,1978.94-95.
  • 6Chris Godsil, Gordon Royle. Algebraic Graph Theory[M]. New York: Springer, 2001.
  • 7An Xinhui. The full automorphism group of the k-cube[J]. Journal of Xinjiang University, 2005, 22(2): 144-146.
  • 8张晓东,李炯生.树的Laplace矩阵的最大和次大特征值[J].中国科学技术大学学报,1998,28(5):513-518. 被引量:22
  • 9许进.超立方体的谱[J].纺织高校基础科学学报,1999,12(2):97-101. 被引量:5
  • 10许进,屈瑞斌.超立方体的谱(英文)[J].工程数学学报,1999,16(4):1-5. 被引量:4

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部