期刊文献+

椭圆变分不等式的小扰动

Small perturbation of elliptic variational inequalities
下载PDF
导出
摘要 研究Banach空间中椭圆变分不等式的扰动问题,得到了扰动问题存在唯一解的一个充分条件;并用它处理了一类半线性微分积分方程的边值问题.设V是可分自反Banach空间,V′是V的对偶空间,K是V中非空闭凸子集,则有定理1设T:V→V′,A:K→V′,且满足(i)T是有界线性算子,存在常数α>0,使得(Tv,v)≥αv2,v∈V;(i)A是伪单调算子,存在常数λ>0,使得(Au-Av,u-v)≤λu-v2,u,v∈K;(ii)α>λ.则存在唯一的u∈K,使得(Tu,v-u)+(Au,v-u)≥(f,v-u)。 A perturbation problem of elliptic variational inequalities in Banach space is studied and a sufficient condition on existence and uniquenss of solutions of the perturbation problem are obtained.As an example,a boundary value problem of semilinear differential and integral enquations has been discussed.Let V be a countable reflexive Banach space V′ the dual space, K the closed convex set in V ,then one has Theorem 1\ Let T:VV′,A:KV′ ,the following condition is satisffied (i) T is a bounded linear operator,there is some α>0 such that(Tv,v) ≥α‖v‖ 2,\ for all v∈V; (ii) A is a pseddo monotone operator,there is some λ>0 such that(Au-Av,u-v)≤λ‖u-v‖,\ for all u,v∈K; (iii) α>λ . Then there is only u∈K such that(Tu,v-u)+(Au,v-u)≥(f,v-u),\ for all v∈K.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 1997年第1期19-22,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 变分不等式 巴拿赫空间 扰动 椭圆变分不等式 variational inequalities pseudo monotone operators boundary value problems perturbations
  • 相关文献

参考文献2

  • 1王耀东,变分不等方程,1987年,29页
  • 2郭大钧,非线性泛函分析,1985年,21页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部