摘要
研究Banach空间中椭圆变分不等式的扰动问题,得到了扰动问题存在唯一解的一个充分条件;并用它处理了一类半线性微分积分方程的边值问题.设V是可分自反Banach空间,V′是V的对偶空间,K是V中非空闭凸子集,则有定理1设T:V→V′,A:K→V′,且满足(i)T是有界线性算子,存在常数α>0,使得(Tv,v)≥αv2,v∈V;(i)A是伪单调算子,存在常数λ>0,使得(Au-Av,u-v)≤λu-v2,u,v∈K;(ii)α>λ.则存在唯一的u∈K,使得(Tu,v-u)+(Au,v-u)≥(f,v-u)。
A perturbation problem of elliptic variational inequalities in Banach space is studied and a sufficient condition on existence and uniquenss of solutions of the perturbation problem are obtained.As an example,a boundary value problem of semilinear differential and integral enquations has been discussed.Let V be a countable reflexive Banach space V′ the dual space, K the closed convex set in V ,then one has Theorem 1\ Let T:VV′,A:KV′ ,the following condition is satisffied (i) T is a bounded linear operator,there is some α>0 such that(Tv,v) ≥α‖v‖ 2,\ for all v∈V; (ii) A is a pseddo monotone operator,there is some λ>0 such that(Au-Av,u-v)≤λ‖u-v‖,\ for all u,v∈K; (iii) α>λ . Then there is only u∈K such that(Tu,v-u)+(Au,v-u)≥(f,v-u),\ for all v∈K.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第1期19-22,共4页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
变分不等式
巴拿赫空间
扰动
椭圆变分不等式
variational inequalities
pseudo monotone operators
boundary value problems
perturbations