摘要
本文研究右上角双线性时间序列模型:的一阶渐近稳定性,其中{et}是独立随机序列,且E<+,E(et)=E(e3t)=0,E(e2t)=.我们获得极限向量u=lim(E(X),E(Xet-1),存在的条件及其表达式,其中Xt=(xt,xt-1r=max(p,n,m)。
The paper investigats the first-order asymptotic stability of upper righthand triangular bilinear time series models , where is an independent random variables sequence with E. E(et)=E (e3t)=0, and E(e2t)=2.We obtain the conditions for existence of limit vector u=lim(E(Xt),E(Xe- 1),…,E(Xe-n)r. and its expression, in which Xt=(xt,xt-1,…, xt-r+1) r=max(p,n,m).
出处
《汕头大学学报(自然科学版)》
1997年第1期1-8,共8页
Journal of Shantou University:Natural Science Edition
关键词
时间序列模型
渐近稳定性
谱半径
双线性模型
upper righthand trianglar bilinear time series model
the first-order asymptotic stability
vector difference equation
eigenvalue
spectral radius