摘要
计及输电线路传输约束的电力市场投标模型可将市场参与者的决策空间分成阻塞和无阻塞2个区域.基于Nash均衡的数学定义和一类投标模型,通过分析市场参与者的最优响应曲线的交点确定市场均衡点状态,以3节点市场为例,分析发现在阻塞情况下,市场若存在均衡点,则均衡点位于阻塞和无阻塞的边界上,且均衡点分布为连续的一段线段.通过一类动态投标模型的数值仿真,计算结果与分析结论一致.
The bidding model of Power Markets involving transmission constraints may divide participants' decision space into two different regions, congestion region and un - congestion region. Based on the mathematical Nash equilibrium definition and a type of bidding model, the property of equilibrium points is studied through the intersection of optimal response curves in different regions. As an example of 3 - buses, the analysis shows that in the case of system congestion, if there exists an equilibrium point, the point will lie at the boundary of congestion and un-congestion region. Moreover, the analysis shows that equilibrium points constitute a continuous region of line. By using a dynamic bidding model, the result of numerical simulations is identical to the analysis.
出处
《电力科学与技术学报》
CAS
2007年第1期25-30,共6页
Journal of Electric Power Science And Technology
基金
国家自然科学基金资助项目(60474070
70601003)
湖南省科技计划项目(06FJ3038)
关键词
电力市场
传输容量
供应函数
NASH均衡
存在性
power market
transmission constraints
supply function
Nash equilibrium
existence