期刊文献+

一类延迟微分方程的并行Rosenbrock方法 被引量:3

Parallel Rosenbrock method for delay differential equations
下载PDF
导出
摘要 针对刚性大系统,根据实际数值仿真和科学计算的需要,提出了一类并行Rosenbrock方法。该方法将不同级分配到不同的处理器上同时计算,以提高计算效率。将其用到一类延迟微分方程上,并对其稳定性及收敛性进行讨论。该方法不需要迭代,具有良好的稳定性。 Based on the demand of practical numerical simulation and scientific computation and aimed at stiffly large systems, this paper presents a new parallel Rosenbrock method. The method involves the calculation of the different internal stages of Rosenbrock methods on different processors in parallel in order to raise computational efficiency. The paper introduces the parallel Rosenbrock method applied to delay differential equations and discusses the stability and convergence. The method of a better stability needs no iteration.
作者 王麟 刘照升
出处 《黑龙江科技学院学报》 CAS 2007年第2期146-150,共5页 Journal of Heilongjiang Institute of Science and Technology
基金 黑龙江科技学院引进高层次人才科研启动基金项目(06-132)
关键词 并行算法 ROSENBROCK方法 延迟微分方程 parallel method Rosenbrock method delay differential equation
  • 相关文献

参考文献3

  • 1HAIRER E,WANNER G,Solving ordinary differential equations Ⅱ[M].Berlin:Springer,1991.
  • 2ZENNARO M,P-stability of Runge-Kutta methods for delay differential equations[J].Numer.Math.,1986,49:305-318.
  • 3YOUSEF SAAD.Iterative methods for sparse linear systems[M].Boston:PWS Publishing Company,1996.

同被引文献10

  • 1罗雁,简金宝,韩道兰.无约束优化中新的Rosenbrock型算法[J].广西科学,2005,12(2):85-88. 被引量:1
  • 2BERTALMIO M, SAPIRO G, CASELLES V, et al. Image Inpainting [ C ]//Proceedings of the 27^th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 2000:417 -424.
  • 3CHAN T F, SHEN J. Mathematical models for local non-texture inpaintings[J]. SIAM J. Appl. Math. ,2001,62(3) :1019-1043.
  • 4TSAI A, YEZZI A. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denesing, interpolation, and magnification [ J ]. IEEE Transaction on Image Processing, 2001, 10(8):1169-1186.
  • 5CHANT F, SHEN J, VESE L. Variational PDE models in image processing [ J ]. Notices of American Mathematical Society, 2006, 50(1) :14 -26.
  • 6YASUDA M, OHKUBO J, TANAKA K. Digital image inprinting based on markov random field [ J ]. IEEE Transaction on Image Processing,2001,10(8) :1 169 - 1 186.
  • 7BERTALMIO M, VESE L, SAPIRO G, et al. Simultaneous structure and texture image inpainting[ J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003,12 ( 8 ) :235 - 254.
  • 8NIU YAN, POSTON T. Using an oriented PDE to repair image textures[ M]//Paragios N, Faugeras O, Chan T, et al. Variational,geometric, and level set methods in computer vision.北京:北京燕山出版社,2005:61-72.
  • 9杜红,石端银,刘照升.求解非线性Fredholm积分方程组的再生核方法[J].黑龙江科技学院学报,2008,18(2):147-149. 被引量:3
  • 10邵肖伟,刘政凯,宋璧.一种基于TV模型的自适应图像修复方法[J].电路与系统学报,2004,9(2):113-117. 被引量:52

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部