期刊文献+

基于g期望的Minkowski不等式

Minkowski inequality for g expectation
下载PDF
导出
摘要 为了证明g期望的Minkowski不等式,在g满足次线性条件下,针对非负生成元,利用比较定理和Young不等式,介绍了g期望的Hlder不等式;然后借助于该不等式证明了对于任意平方可积随机变量,当g满足次线性条件且为正值生成元时,g期望的Minkowski不等式成立。 To prove Minkowski inequality for g expectation, this paper is concerned with the use of the well-known comparison theorem and Young inequality for the introduction of the Holder inequality for g expectation when g satisfies the sublinear condition and is a nonnegative generator and the paper features the use of this inequality to prove that, for any square integrable random variables, Minkowski inequality for g expectation is valid when g is a positive-value sublinear generator.
作者 高杰
出处 《黑龙江科技学院学报》 CAS 2007年第2期154-156,共3页 Journal of Heilongjiang Institute of Science and Technology
关键词 倒向随机微分方程 g期望 HOLDER不等式 MINKOWSKI不等式 backward stochastic differential equation ( BSDE ) g expectation Holder inequality Minkowski inequality
  • 相关文献

参考文献1

  • 1JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26

二级参考文献8

  • 1[1]Peng, S., BSDE and related g-expectations, Pitman Research Notes in Mathematics Series, 364, 1997,141-159.
  • 2[2]Chen, Z. & Epstein, L., Ambiguity, risk and asset returns in continuous time, Econometrica, 70(2002),1403-1443.
  • 3[3]Briand, P., Coquet, F., Hu, Y., Memin, J. & Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectation, Electon. Comm. Probab., 5(2000), 101-117.
  • 4[4]Coquet, F., Hu, Y., Memin, J. & Peng, S., Filtration consistent nonlinear expectations and related g-expectation, Probab. Theory Related Fields, 123(2002), 1-27.
  • 5[5]Chen, Z. & Peng, S., A general downcrossing inequality for g-martingales, Statistics and Probability Letters, 46(2000), 169-175.
  • 6[6]Pardoux, E. & Peng, S., Adapted solution of a backward stochastic differential equation, Systems Control Letters, 14(1990), 55-61.
  • 7[7]Peng, S., A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation,Stochastics, 38:2(1992), 119-134.
  • 8[8]El Karoui, N., Peng, S. & Quenez, M. C., Backward stochastic differential equations in finance, Math.Finance, 7:1(1997), 1-71.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部