摘要
提出一种基于广义预测控制的对角递归神经网络控制器,并给出该神经网络控制器和辨识器的学习率范围.仿真实验表明,所采用的神经网络控制结构适合于带纯时延的未知的非线性被控对象的广义预测控制,同时能有效地改善神经网络学习的收敛性.
Diagonal recurrent neurocontroller based on generalized predictive control is proposed in this paper. The bounds on learning rates for the weights of the neural networks are obtained. The simulation results show that the neural networks control architecture used is capable of generalized predictive control for unknown nonlinear plants with dead time, and can effectivelly improve convergence behavior in training neurocontroller.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第1期22-26,共5页
Journal of Xiamen University:Natural Science
基金
智能技术与系统国家重点实验室开放研究课题
关键词
广义预测控制
智能控制
神经网络控制器
Generalized predictive control,Neural networks, Intelligent control