摘要
本文研究一类变时滞神经网络平衡点的全局指数稳定性.在不要求激活函数全局Lipschitz条件下,利用Lyapunov函数方法,并结合Young不等式和Halanay时滞微分不等式,得到了系统全局指数稳定的充分条件.文末,一个数值例子用以说明本文结果的有效性.
The main purpose of this paper is to study the globally exponential stability of the equilibrium point for a class of neural networks with time-varying delays. Without assuming global Lipschitz conditions on the activation functions, applying idea of vector Lyapunov function, combining Young inequality and Halanay differential inequality with delay,the snfficient conditions for globally exponential stability of neural networks are obtained. As an illustration,a numerical example is worked out using the results obtained.
出处
《应用数学》
CSCD
北大核心
2007年第2期258-262,共5页
Mathematica Applicata
基金
Supported by National Natural Science Foundation of China (10461006)
the Youth Foundation of Yantai University(02037)
关键词
神经网络
变时滞
全局指数稳定性
Neural networks
Time-varying delay
Globally exponential stability