期刊文献+

解与HJB方程相关的拟变分不等式的松弛法(英文)

A Relaxation Algorithm for a Quasivariational Inequality System Related to HJB Equation
下载PDF
导出
摘要 本文对关于HJB方程的拟变分不等式提出了松弛算法,也给出了基于上述算法的区域分解方法,并建立了相应的收敛性定理. This paper presents a relaxation algorithm for a quasivariational inequality system related to HJB equation. A domain decomposition method based on this algorithm is proposed. The convergence theorems have been established.
出处 《应用数学》 CSCD 北大核心 2007年第2期433-440,共8页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(10571046)
关键词 松弛算法 拟变分不等式 HJB方程 区域分解 Relaxation algorithm Quasivariational inequality HJB equation Domain decomposition
  • 相关文献

参考文献8

  • 1Boulbrachene M, Haiour M. The finite element approximation of Hamilton-Jacobi-Bellman equations[J]. Computers and Mathematics with Applications, 2001, 41 : 993- 1007.
  • 2Sun M. Alternating direction Algorithms for solving Hamilton-Jacobi-Bellman equations[J] Applied Mathematics and Optimization, 1996, 34: 267- 277.
  • 3Zhou S Z, Zhan W P. A new domain decomposition method for an HJB equation[J]. Journal of Computational and Applied Mathematics, 2003, 159:195-204.
  • 4Cottle R W, Pang J S, Stone R E. The Linear Complementarity Problem[M].New York: AP, 1992.
  • 5Cryer C W. The solution of quadratic programming problem using systematic over-relaxation [J].SIAM Journal on Control, 1971,9 : 385-392.
  • 6Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam:North-Holland, 1978.
  • 7Zeng J P , Zhou S Z. On monotone and geometric convergence of Schwarz method for two-sided obstacle problems[J]. SIAM Journal on Numerical Analysis, 1998, 35 : 600-616.
  • 8Zeng J P,Zhou S Z. Schwarz algorithm for the solution oI variational inequalities with nonlinear source term[J]. Applied Mathematics and Computation, 1998, 97 : 23-25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部