期刊文献+

特征选择和支持向量回归参数的联合优化

Joint optimization of feature selection and parameters for support vector regression
下载PDF
导出
摘要 为提高支持向量回归算法的学习能力和泛化性能,提出了特征选择和支持向量回归参数的联合优化方法。联合优化方法采用主成分分析产生新的特征集,以方均误差为目标计算回归精度,并应用实数编码的免疫遗传算法求解此优化问题。仿真实验结果表明,联合优化的回归精度要优于单独优化特征和支持向量回归参数,而且优化速度更快。 In order to improve Support Vector Regression (SVR) learning ability and generalization performance,a joint optimization method for selecting features and SVR parameters is proposed.By using the method,a new set of uncorrelated features is obtained by using principal component analysls,the Mean Squared Error (MSE) is taken into account for the accuracy evaluation of SVR,and a real-coding based immune genetic algorithm is employed to solve the joint optimization problem.Simulation experiments show that the joint optimization method guarantees better regression accuracy and the optimization process has a higher rate than the single optimization of features or SVR parameters.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第14期52-55,共4页 Computer Engineering and Applications
关键词 支持向量回归 特征选择 参数选择 主成分分析 免疫遗传算法 Support Vector Regression(SVR) feature selection parameters selection principal component analysis immune genetic algorithm
  • 相关文献

参考文献15

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Vapnik V.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-999.
  • 3Vapnik V,Golowich S,Smola A.Support vector method for function approximation,regression,estimation,and signal processing[C]//Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1997:1281-1287.
  • 4Smola A J,Sch(o)lkopf B.A tutorial on support vector regression[J].Statistics and Computing,2004,14(3):199-222.
  • 5Chapelle O,Vapnik V,Bousquet O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1):131-159.
  • 6Kwok J T,Tsang I W.Linear dependency betweenεε and the input noise in ε-support vector regression[J].IEEE Transactions on Neural Networks,2003,14(3):544-553.
  • 7Cherkassky V,Ma Y.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.
  • 8Usttn B,Melssena W J,Oudenhuijzenb M,et al.Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization[J].Analytica Chimica Acta,2005,544(1/2):292-305.
  • 9Ayat N E,Cherieta M,Suenb C Y.Automatic model selection for the optimization of SVM kernels[J].Pattern Recognition,2005,38(10):1733-1745.
  • 10Scholkopf B,Mika S,Burges C J C,et al.Input space versus feature space in the kernel based methods[J].IEEE Transactions on Neural Networks,1999,10(5):1000-1017.

二级参考文献2

共引文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部