期刊文献+

基于自适应神经网络的非线性系统故障诊断 被引量:7

Fault diagnosis based on adaptive nueral networks for a class of nonlinear systems
下载PDF
导出
摘要 针对一类模型未知及状态不可测的非线性系统,提出了基于自适应神经网络的故障诊断策略,不仅在线估计神经网络的矩阵权重,而且在线估计高斯函数的宽度和中心。该方法对系统的未知非线性特性没有特别要求,仅对神经网络提出较弱的假设条件。首先利用径向基函数(Radial Basis Function,简称RBF)神经网络构造状态观测器,估计系统的状态。然后利用另一个自适应RBF神经网络作为故障估计器,其输入是系统的估计状态(而不是系统状态),其输出为系统所发生的故障模型。利用Lyapunov稳定理论详细分析了状态误差和故障误差的收敛性,分别给出了两个神经网络的参数调整律,仿真证明了该方法的实用性和有效性。 Fault diagnosis architecture based on adaptive neural networks for a class of unknown nonlinear systems with unmeasured states is proposed. The center vector and width vector of Gaussian function are on-line updated but updating weight matrix. Under the mild condition, the problem of fault diagnosis can be solved for the nonlinear systems. The states of system and the faults in system are estimated respectively by employing two RBF neural networks. Estimated states are input to the fault approximator whose outputs are estimated fault. The stability of the error system is analysized in detail, the parameter updating laws for two neural networks are given. Finally, a simulation example is given to illustrate the effectiveness of the approach.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2007年第4期665-668,共4页 Systems Engineering and Electronics
基金 国家自然科学基金重点项目(60234010) 航空科学基金项目(05E52031) 国防基础科研项目资助课题(K1603060318)
关键词 非线性系统 故障诊断 状态估计 自适应神经网络 nonlinear systems fault diagnosis state estimation adaptive neural network
  • 相关文献

参考文献14

  • 1Venkatasubramanian V,Rengaswamy R,Yin K,et al.A review of process fault detection diagnosis Part I:quantitative model-based methods[J].Computer and Chemical Enginneering,2003,27(3):293-311.
  • 2Zhang Xiaodong,Thomas Parisini,Polycarpou Marios M.Adaptive fault-tolerant control of nonlinear uncertain systems:an information-based diagnostic approach[J].IEEE Transactions on Automatic Control,2004,49(8):1259-1274.
  • 3李令莱,周东华.基于解析模型的非线性系统鲁棒故障诊断方法综述[J].信息与控制,2004,33(4):451-456. 被引量:20
  • 4贾明兴,王福利,毛志忠.基于自适应观测器的一类非线性系统鲁棒故障诊断[J].自动化学报,2004,30(4):601-607. 被引量:7
  • 5Shields D N,Du S.Fault detection observers for continuous onolinear polynomial systems of general degree[J].International Journal of Control,2003,76(5):437-452.
  • 6Jiang B,Wang J L.An adaptive technique for robust diagnosis of faults with independent effects on system outputs[J].International Journal of Control,2002,75(11):792-802.
  • 7Gertler J,Staroswieeeki M.Structured fault diagnosis in mildly nonlinear systems:Parity space and input-output formulations[C]∥Preprints of IFAC 16th Triennial World Congress Washington,USA,2003:439-444.
  • 8Wang H,Huang Z J,Daley S.On the use of adaptive updating rules for acctuator and sensor fault diagnosis[J].Automatica,1997,33(2):217-225.
  • 9Seliger R,Frank P M.Robust component fault detection and isolation in nonlinear dynamic systems using nonlinear unknown input observer[C]∥In Proceedings of the IFAC/IMACS Symposium on Fault Detection,Supervision and Safety for Technical Processes,Baden-Baden,1991:313-317.
  • 10Arun T V.Sensor bias fault diagnosis in a class of nonlinear systems[J].IEEE Trans.Automatic Control,2001,46(6):949-954.

二级参考文献39

  • 1Frank P M, Ding S X, Koppen-Seliger B. Current developments in the theory of FDI [A]. 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes ( SAFEPROCESS'2000) [C]. Budapest, Hungary: 2000. 16~27.
  • 2Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis Part Ⅰ: quantitative modelbased methods [ J ]. Computer & Chemical Engineering, 2003,27(3): 293 -311.
  • 3Frank P M, Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems [ J].Journal of Process Control, 1997, 7(6): 403 -424.
  • 4Chen J, Patton R J. Robust Model-based Fault Diagnosis for Dynamic Systems [ M ]. Dordrecht: Kluwer Academic Press, 2000.
  • 5Frank P M. On-line fault detection in uncertain nonlinear systems using diagnostic observers: a survey [J]. International Journal of Systems Science, 1994, 25( 12): 2129-2154.
  • 6Garcia E A, Frank P M. Deterministic nonlinear observer-based approaches to fault diagnosis:a survey [ J]. Control Engineering Practice, 1997, 5 ( 5 ): 663 - 670.
  • 7Watanabe K, Himmelblau D M. Instrument fault detection in systems with uncertainties [J]. International Journal of Systems Science, 1982, 13(2): 137-158.
  • 8Chen J, Patton R J, Zhang H Y. Design of unknown input observers and robust fault detection filters [ J]. International Journal of Control, 1996, 63(1): 85 -105.
  • 9Watanabe K, Himmelblau D M. Incipient fault diagnosis of nonlinear processed with multiple causes of faults [ J]. Chemical Engineering Science, 1984, 39(3 ): 491 - 508.
  • 10Yu D L, Shields D N. A bilinear fault detection observer [ J ].Automatica, 1996, 32( 11 ): 1597 - 1602.

共引文献24

同被引文献65

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部