期刊文献+

一类非线性系统的局部镇定 被引量:1

THE LOCAL STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS
原文传递
导出
摘要 研究一类非线性系统的局部状态反馈镇定问题.基于中心流形理论,给出一类非线性系统渐近镇定的充分条件,并设计出镇定系统的反馈控制律.文中利用具有齐次导数的Lyapunov函数方法,特别研究了一类平面非线性系统及具有二重零特征值的一类非线性系统的渐近镇定问题,给出了系统镇定的若干充分条件,并构造出控制律.文中的例表明了所得结果的有效性. In this paper, the problem of local state feedback stabilization of a class of nonlinear systems is considered. Based on the center manifold theory, a sufficient condition of asymptotical stabilization of a class of nonlinear systems is given, and the control law, which stabilizes the nonlinear systems, is designed. Using the method of Lyapunov function with homogenous derivative, we investigate specially the problem of the stabilization for a class of planar nonlinear systems and a class of nonlinear systems with zero eigenvalue of.multiplicity 2, respectively. Some sufficient conditions for stabilization are established, and the control laws are constructed. Some examples are given which show the validity of the results.
出处 《系统科学与数学》 CSCD 北大核心 2007年第2期265-272,共8页 Journal of Systems Science and Mathematical Sciences
基金 天津市高等学校科技发展基金(20051527)资助课题.
关键词 非线性系统 镇定 中心流形 LYAPUNOV函数 Nonlinear systems, stabilization, center manifold, Lyapunov function.
  • 相关文献

参考文献9

  • 1Cheng D.Stabilizaton of a class of nonlinear non-minimum phase systems.Asian Journal of Control,2000,2(2):132-139.
  • 2Aeyels D.Stabilization of a class of nonlinear system by a smooth feedback control.Systems and Control Letters,1985,5:289-294.
  • 3Behtach S,Dastry D.Stabilization of nonlinear systems with uncontrollable linearization.IEEE Transactions on Automatic Control,1988,33(6):585-590.
  • 4Marino R.Feedback stabilization of single-input nonlinear systems.Systems and Control Letters,1988,10:201-206.
  • 5Cheng D,Martin C.Stabilization of non-linear systems via designed center manifold.IEEE Transactions on Automatic Control,2001,46(9):1372-1383.
  • 6Tankovic M,Sepulchre R,Kokotovic P V.Constructive Lyapunov stabilization of nonlinear cascade systems.IEEE Transactions on Automatic Control,1996,41(12):1723-1735.
  • 7Dong Y,Cheng D,Qin H.Feedback stabilization via designed planar center manifold.International Journal of Roubust and Nonlinear Control,2004,14:1-14.
  • 8Carr J.Application of Center Manifold Theory.New York:Springer-Verlag,1981.
  • 9Hahn W.Stability of Motion.Springer-Verlag,1967.

同被引文献12

  • 1张利军,程代展.非线性控制系统的一般形式及其稳定性(英文)[J].中国科学院研究生院学报,2003,20(2):212-222. 被引量:1
  • 2Cheng D, Xi Z, Feng G. Stabilization of general nonlinear control systems via center manifold and approximation techniques [J]. Journal of Dynamical and Control Systems, 2004, 10 (3) :315 -327.
  • 3Cheng D. Stabilization of a class of nonlinear non-minimum phase systems[J]. Asian Journal of Control, 2000, 2(2) : 132 - 139.
  • 4Liaw Der Cherng. Application of center manifold reduction to nonlinear system stabilization [J]. Applied Mathematics and Computation, 1998,91(2 - 3) : 243 - 258.
  • 5Cheng D, Tarn T J, Spurgeon S K. On the design of output regulators for nonlinear systems[J]. Systems and Control Letters, 2001,43(3) : 167 - 179.
  • 6Dong Y, Cheng D, Qin H. Feedback stabilization via designed planar center manifold[J]. International Journal of Roubust and Nonlinear Control, 2004,14 (1) : 1 - 14.
  • 7Aeyeis D. Stabilization of a class of nonlinear systems by a smooth feedback control [J]. Systems and Control Letter, 1985, 24(5): 289-294.
  • 8Marino R. Feedback of single-input nonlinear systems[J]. Systems and Control Letters, 1988, 27 (10) : 201 - 206.
  • 9Khalil H K. Nonlinear Systems [M]. 3rd ed. Prentice Hall, 2002.
  • 10刘向东,黄文虎.非线性临界系统稳定性分析的中心流形方法[J].哈尔滨工业大学学报,1999,31(6):1-4. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部