期刊文献+

零攻角小钝头钝锥高超音速绕流边界层的稳定性分析和转捩预报 被引量:25

Stability Analysis and Transition Prediction of Hypersonic Boundary Layer Over a Blunt Cone With Small Nose Bluntness at Zero Angle of Attack
下载PDF
导出
摘要 研究了零攻角小钝头圆锥高超音速边界层的稳定性及转捩预测问题.小钝头的球头半径为0.5mm,锥的半锥角为5°,来流马赫数为6.采用直接数值模拟方法得到了钝锥的基本流场,利用线性稳定性理论分析了等温壁面和绝热壁面条件下的第一、第二模态不稳定波,并用“e-N”方法对转捩位置进行了预测.在没有实验给出N值的情况下,暂取N为10.研究发现,壁面温度条件对于转捩位置有较大影响.绝热边界层的转捩位置比等温边界层的靠后.且尽管高马赫数下第二模态波的最大增长率远大于第一模态波的最大增长率,但绝热边界层的转捩位置是由第一模态不稳定波决定的.研究方法应能推广到有攻角的三维边界层流动的转捩预测. Stability and transition prediction of hypersonic boundary layer on a blunt cone with small nose bluntness at zero angle of attack had been investigated. The nose radius of the cone is 0.5 nun; the cone half-angle is 5 degree, and the Mach number of the oncoming flow is 6. The base flow of the blunt cone was obtained by direct numerical sinulation. The linear stability theory was applied for the analysis of the first mode and the second mode unstable waves under both isothermal and adiabatic wall condition, and e-N method was used for the prediction of transition location. The N factor was tentatively taken as 10, as no experimeatally continued value was available. It is found that the wall temperature condition has a great effect on the Wansition location. For adiabatic wall, transition would take place more rearward than those for isothermal wall. And despite flint for high Mach number flows, the maximum amplification rate of the second mode wave is far bigger than the maximum amplification rate of the first mode wave. The transition location of the boundary layer with adiabatic wall is controlled by the growth of first mode unstable waves. The methods enTployed are expected to be also applicable to the Wansition prediction for the three dimensional boundary layers on cones with angle of attack.
作者 苏彩虹 周恒
机构地区 天津大学力学系
出处 《应用数学和力学》 CSCD 北大核心 2007年第5期505-513,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金(重点)资助项目(10632050)
关键词 高超音速 边界层 转捩 钝锥 supersonic flow boundary layer stability blunt cone
  • 相关文献

参考文献19

  • 1Stentson K F,Rushton G H.Shock tunnel investigation of Boundary-Layer transition at M= 5.5[J].AIAA Journal,1967,5(5):899-905.
  • 2Stentson K F.Hypersonic Boundary Layer Transition Experiments[R].AFSC Wright-Patterson Air Force Base,AFWAL-TR-80-3062,Ohio,Air Force Wright Aeronautical Laboratories,1980.
  • 3Schneider S P.Laminar-Turbulent Transition in High-Speed Compressible Boundary Layer:Continuation of Elliptic-Cone Experiments[R].School of Aeronautics and Astronautics of Purdue University,Lafayett,Indiana,AFRL-SR-BL-TR,ADA874373,2000.
  • 4Malik M R,Balakumar P.Instability and Transition in Three-Dimensional Supersonic Boundary Layers[R].Orlando FL:AIAA International Aerospace Planes Conference 4 th,1992.
  • 5Muir J F,Trujillo A A.Experimental Investigation of the Effects of Nose Bluntness,Freestream Reynold Number,and Angle of Attack on Cone Boundary Layer Transition at a Mach Number of 6[R].AIAA Paper,72-216,1972.
  • 6Holden M,Bower D,Chadwick K.Measurements of Boundary Layer Transition on Cones at Angle of Attack for Mach Numbers from 11 to 13[R].AIAA Paper,95-2294,1995.
  • 7Cebeci T,Stewartson K.On stability and transition in three-dimensional flows[J].AIAA Journal,1980,18(4):398-405.
  • 8Cebeci T,Shao J P,Chen H H,et al.The Preferred Approach for Calculating Transition by Stability Theory[A].Institute for Numerical Computation and Analysis.In:Proceeding of International Conference on Boundary and Interior Layers[C].France:Toulouse,2004.
  • 9Crouch,J D,Kosorygin V S,Ng L L.Modeling the effects of steps on boundary-layer transition[A].IUTAM.In:Proceedings of the sixth IUTAM Symposium on Laminar-Turbulent Transition[C].India:Bangalore,2004.
  • 10Sousa J M M,Silva L M G.Transition prediction in infinite swept wings using Navier-Stokes computations and linear stability theory[J].Computers and Structures,2004,82(17/19):1551-1560.

二级参考文献11

  • 1王新军,罗纪生,周恒.平面槽道流中层流-湍流转捩的“breakdown”过程的内在机理[J].中国科学(G辑),2005,35(1):71-78. 被引量:19
  • 2马兵.圆管流动中壁面引入周期扰动空间发展的研究[M].北京:清华大学出版社,1999..
  • 3Mack L M. Boundary layer linear stability theory. In AGARD Rep, 1984, 709.
  • 4Stetson K F, Kimmel R L. On hypersonic boundary layer stability. AIAA Paper, 1992, 92:0737.
  • 5Bountin D A, Sidorenko A A, Shiplyuk A N. Development of natural disturbances in a hypersonic boundary layer on a sharp cone. Journal of Applied Mechanics and Technical Physics, 2001,42(1): 57-62.
  • 6Malik M R. Hypersonic flight transition data analysis using parabolized stability equations with chemistry effects. J Spacecraft Rockets, 2003, 40(3): 332-344.
  • 7Dinavahi S P G, Pruett C D, Zang T A. Direct numerical simulation and data analysis of a Mach 4.5 transitional boundary-layer flow. Physics of Fluids, 1994, 6(3): 1323-1330.
  • 8Xu S, Martin M P. Assessment of inflow boundary conditions for compressible turbulent boundary layers.Physics of Fluids, 2004, 16(7): 2623-2639.
  • 9Poinsot T J, Lele S K. Boundary conditions for direct simulations of compressible viscous flows. Journal of Computational Physics, 1992, 101(1): 104-129.
  • 10Lundbladh A, Schmid P J, Berlin S, et al. Simulation of bypass transition in spatially evolving flows. In AGARD-CP-55 l, 1994.

共引文献22

同被引文献227

引证文献25

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部