期刊文献+

具有两个驰豫时间的热弹性立方晶体材料中平面波的传播 被引量:1

Propagation of Plane Waves in Thermoelastic Cubic Crystal Material With Two Relaxation Times
下载PDF
导出
摘要 研究具有两个驰豫时间的、两个不同弹性和热性质的、广义传热立方晶体固体半空间的有缺陷结合面上,热弹性平面波的反射和折射问题.具有两个驰豫时间的广义热弹性理论,是1972年由Green和Lindsay提出并应用于问题的研究.对有缺陷边界,给出了反射系数和折射系数(即反射波和折射波振幅与入射波振幅之比)的表达式,并推演了法向刚性边界、横向刚性边界、接触传热边界、滑动边界和结合面边界时的表达式.给出了在不同边界条件及出射角时,不同的反射波和折射波的振幅比,在不同的入射波时的变化图.发现反射波和折射波振幅比受到介质刚性和热性质的影响. A problem concerning with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated.The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem in 1972.The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves were obtained for an imperfect boundary and deduced for normal stiffness, transverse stillness, therml contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence were compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thrmal properties of the media.
出处 《应用数学和力学》 CSCD 北大核心 2007年第5期561-574,共14页 Applied Mathematics and Mechanics
基金 印度CSIR资助项目
关键词 广义热弹性 法向刚度 横向刚度 接触传热 立方晶体 振幅比 generalized thermoelasticity normal stiffness transverse stiffness thermal contact conductance cubic crystal amplitude ratio
  • 相关文献

参考文献2

二级参考文献30

  • 1Biot M. Thermoelasticity and irreversible thermodynamics [ J ].J Appl Phys, 1956,27 ( 3 ) : 240-253.
  • 2Muller J M. The coldness of universal function in thermoelastic bodies[ J]. Arch Ration Mech Anal, 1971,41(5) :319-332.
  • 3Green A E,Laws N. On the entropy production inequality[ J]. Arch Ration Mech Anal, 1972,45( 1 ) :47-53.
  • 4Green A E, Lindsay K A. Thermoelasticity[J]. J Elasticity, 1972,2: 1-5.
  • 5Suhubi E S. Thermoelastic solids[ A]. In: Eringen A C, Ed. Continuum Physics [C]. Vol 2. Part 2, Chapter2. New York :Academic Press, 1975.
  • 6Eringen A C. Foundations of Micropolar Thermoelasticity[ M]. Intern Cent for Mech Studies. Course and Lectures. No 23. Wien: Springer-Verlag, 1970.
  • 7Nowacki M. Couple-stresses in the theory of themoelasticity[ A] .In: Parkus H, Sedov L I, Eds. Proc IUTAM Symposia[C] .Vienna: Springer-Verlag, 1966, 259-278.
  • 8Iesan D. The plane micropolar strain of orthotropic elastic solids[ J]. Arch Mech, 1973,25(3) :547-561.
  • 9Iesan D. Torsion of anisotropic elastic cylinders[ J]. Z Angew Math Mech, 1974,54(12) : 773-779.
  • 10Iesan D. Bending of orthotropic micropolar elastic beams by terminal couples[ J]. An St Uni Iasi, 1974,20(2):411-418.

共引文献1

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部