期刊文献+

基于有限混合多变量t分布的鲁棒聚类算法 被引量:3

Robust Clustering Based on Finite Mixtures t Distribution
下载PDF
导出
摘要 在用混合模型聚类时,聚类数据中存在局外点是非常困难的问题。为了提高混合拟合的鲁棒性,本文用混合t模型替代混合高斯模型,来拟合含有背景噪音的多变量多高斯分布数据;提出了两个求解混合t模型的修改版期望最大化(EM)算法,并将它们与模型选择准则集成在一起,应用一个组合规则成分灭绝策略选择聚类成分数,得到两个对应的鲁棒聚类算法。对含有背景噪音的多个高斯成分进行不同聚类算法的大量实验表明,本文的鲁棒聚类算法能自动选择最佳的聚类成分数,相对于混合高斯模型的聚类方法,鲁棒性增强很多;相对于传统求解混合t模型(EM/ECM)的聚类方法,能有效避免其严重依赖初始值和易收敛至参数空间边界的缺点,具有较强的鲁棒性和较快的收敛速度。 Providing protection against outlier in clustering data is a difficult problem for mixtures models fitting. In this paper, we consider the fitting of mixtures t distributions alternative to mixtures normal distributions for multi-component gauss data with background noise, to improve the robustness of fitting. We propose two modified versions of EM algorithm and integrate them with a model selection criterion respectively, then we get two robust clustering algorithms which can avoid the drawbacks of traditional algorithms (EM/ECM) for solving mixtures t models- highly dependent on initialization and may converge to the boundary of the parameter space, and can also select the number of clusters component automatically by a combined component annihilation strategy. Experiment results show the contrast among different algorithms and demonstrate the effectiveness of our algorithms.
作者 余成文 郭雷
出处 《计算机科学》 CSCD 北大核心 2007年第5期190-193,共4页 Computer Science
基金 国家自然科学基金项目(60175001)资助
关键词 局外点 鲁棒聚类 混合t模型 期望最大化算法 模型选择准则 Outlier, Robust clustering, Mixtures t distribution, Expectation maximization, Model selection criterion
  • 相关文献

参考文献9

  • 1McLachlan G,Peel D.Finite Mixture Models.New York;John Wiley & Sons.2000
  • 2Liu C,Rubin D B.ML Estimation of the t Distribution using EM and its Extensions,ECM and ECME,Statistica Sinica,1995(5):19~39
  • 3Liu C.ML Estimation of the Multivariate t Distribution and the EM Algorithm.Journal of Multivariate Analysis,1997,63:296 ~312
  • 4Peel D,McLachlan G J.Robust Mixture Modeling using the t Distribution,Statistics and Computing,2000(10):339~348
  • 5Celeux G,Chretien S,Forbes F,Mkhadri A.A Component Wise EM Algorithm for Mixtures,Journal of Computational and Graphical Statistics,2001,16(10):697~712
  • 6Figueiredo MAT.Jain AK.Unsupervised Learning of Finite Mixture Models.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):381~396
  • 7Meng XL,Rubin DB.Maximum Likelihood Estimation via the ECM Algorithm:a general Framework.Biometrika,1993,80:267~278
  • 8Ciarlet PG.Introduction to Numerical Linear Algebra and Optimization.Cambridge Texts in Applied Mathematics:Cambridge University Press.1988
  • 9Chretien S,Hero AO.Generalized Proximal Point Algorithms and Bundle Implementation:[Technical Report,CSPL 313].The University of Michigan,Ann Arbor,USA,1998

同被引文献37

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部