摘要
Considering the multiscale character of LFO effects of SST on LFO in the tropical atmosphere (low-frequency oscillation) in the tropical atmosphere, the are discussed by using an absolute ageostrophic, baroclinic model. Here, SST effects include sea surface heating and forcing of SST anomalies (SSTAs). Studies of the influences of sea surface heating on LFO frequency and stability show that sea surface heating can slow the speed of waves and lower their frequency when SST is comparatively low; while higher SST leads to unstable waves and less periods of LFO. Since the impact of a SSTA on ultra-long waves is more evident than that on kilometer-scale waves, long-wave approximation is used when we continue to study the effect of SSTAs. Results indicate that SSTAs can lead to a longer period of LFO, and make waves unstable. In other words, positive (negative) SSTAs can make waves decay (grow).
Considering the multiscale character of LFO effects of SST on LFO in the tropical atmosphere (low-frequency oscillation) in the tropical atmosphere, the are discussed by using an absolute ageostrophic, baroclinic model. Here, SST effects include sea surface heating and forcing of SST anomalies (SSTAs). Studies of the influences of sea surface heating on LFO frequency and stability show that sea surface heating can slow the speed of waves and lower their frequency when SST is comparatively low; while higher SST leads to unstable waves and less periods of LFO. Since the impact of a SSTA on ultra-long waves is more evident than that on kilometer-scale waves, long-wave approximation is used when we continue to study the effect of SSTAs. Results indicate that SSTAs can lead to a longer period of LFO, and make waves unstable. In other words, positive (negative) SSTAs can make waves decay (grow).
基金
supported by the National Basic Research Program of China under No.2006CB403607
State Key Project(Grant No.40633018)
National Natural Science Foundation of China(Grant No.90211011)
the Key National Project"SCSMES".